On selfsimilar Jordan curves on the plane

被引:24
作者
Aseev, VV
Tetenov, AV
Kravchenko, AS
机构
[1] Sobolev Institute of Mathematics,
[2] Gorno-Altaisk State University,undefined
[3] Novosibirsk State University,undefined
关键词
attractor; selfsimilar fractal; open set condition; curve with bounded turning; quasiconformal mapping; quasiarc; Hausdorff measure; Hausdorff dimension; similarity dimension;
D O I
10.1023/A:1023848327898
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the attractors of a finite system of planar contraction similarities S-j (j = 1,. . ., n) satisfying the coupling condition: for a set {x(0),...,x(n)} of points and a binary vector (s(1),...,s(n)), called the signature, the mapping S-j takes the pair {x(0), x(n)} either into the pair {x(j-1), x(j)} (if s(j) = 0) or into the pair {x(j), x(j-1)} (if s(j) = 1). We describe the situations in which the Jordan property of such attractor implies that the attractor has bounded turning, i.e., is a quasiconformal image of an interval of the real axis.
引用
收藏
页码:379 / 386
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 1988, HOLOMORPHIC FUNCTION
[2]  
Aseev V.V., 2002, 6 RUSS KOR INT S S 3, P24
[3]  
ASEEV VV, 2000, 4 SIB C APPL IND M 1, P147
[4]  
ASEEV VV, 2002, DINAMIKA SPLOSHN SRE, V120, P3
[5]   SELF-SIMILAR SETS .7. A CHARACTERIZATION OF SELF-SIMILAR FRACTALS WITH POSITIVE HAUSDORFF MEASURE [J].
BANDT, C ;
GRAF, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (04) :995-1001
[6]  
Crownover R. M., 1995, INTRO FRACTALS CHAOS
[7]  
FORSTER O., 1980, Grad. Texts in Math., V81
[8]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[9]  
Kuratowski K., 1966, Topology, V1
[10]   SEPARATION PROPERTIES FOR SELF-SIMILAR SETS [J].
SCHIEF, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (01) :111-115