Universal bounds for large determinants from non-commutative Holder inequalities in fermionic constructive quantum field theory

被引:4
作者
Bru, J. -B. [1 ,2 ,3 ]
de Siqueira Pedra, W. [4 ]
机构
[1] Univ Basque Country, Dept Matemat, Fac Ciencias & Tecnol, Apartado 644, E-48080 Bilbao, Spain
[2] BCAM Basque Ctr Appl Math Mazarredo, Bilbao 48009, Spain
[3] Basque Fdn Sci, Ikerbasque, Bilbao 48011, Spain
[4] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, BR-05314970 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Determinant bounds; Holder inequalities for non-commutative L-p-spaces; interacting fermions; constructive quantum field theory;
D O I
10.1142/S0218202517500361
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Efficiently bounding large determinants is an essential step in non-relativistic constructive quantum field theory to prove the absolute convergence of the perturbation expansion of correlation functions in terms of powers of the strength u is an element of R of the interparticle interaction. We provide, for large determinants of fermionic covariances, sharp bounds which hold for all (bounded and unbounded, the latter not being limited to semibounded) one-particle Hamiltonians. We find the smallest universal determinant bound to be exactly 1. In particular, the convergence of perturbation series at u = 0 of any fermionic quantum field theory is ensured if the matrix entries (with respect to some fixed orthonormal basis) of the covariance and the interparticle interaction decay sufficiently fast. Our proofs use Holder inequalities for general non-commutative L-p-spaces derived by Araki and Masuda [Positive cones and L-p-spaces for von Neumann algebras, Publ. RIMS, Kyoto Univ. 18 (1982) 339-411].
引用
收藏
页码:1963 / 1992
页数:30
相关论文
共 15 条
[1]  
Abdesselam A., 1995, Constructive Physics. Results in Field Theory, Statistical Mechanics and Condensed Matter Physics. Proceedings of the Conference, P7
[2]  
Araki H., 1982, Publ. RIMS Kyoto Univ., V18, P759, DOI DOI 10.2977/PRIMS/1195183577
[3]  
Araki H., 1970, Publ. Res. Inst. Math. Sci., V6, P385, DOI DOI 10.2977/PRIMS/1195193913
[4]   BETA-FUNCTION AND SCHWINGER-FUNCTIONS FOR A MANY FERMIONS SYSTEM IN ONE-DIMENSION - ANOMALY OF THE FERMI-SURFACE [J].
BENFATTO, G ;
GALLAVOTTI, G ;
PROCACCI, A ;
SCOPPOLA, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 160 (01) :93-171
[5]  
Bratteli O., 1996, OPERATOR ALGEBRAS QU, VII
[6]  
Bratteli O., 1996, OPERATOR ALGEBRAS QU, VI
[7]   MAYER EXPANSIONS AND THE HAMILTON-JACOBI EQUATION [J].
BRYDGES, DC ;
KENNEDY, T .
JOURNAL OF STATISTICAL PHYSICS, 1987, 48 (1-2) :19-49
[8]  
de Siqueira Pedra W., 2005, THESIS
[9]  
Derezinski J, 2006, LECT NOTES MATH, V1882, P67
[10]   Universality of the Hall Conductivity in Interacting Electron Systems [J].
Giuliani, Alessandro ;
Mastropietro, Vieri ;
Porta, Marcello .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (03) :1107-1161