Development and Validation of Machine Learning-based Model for the Prediction of Malignancy in Multiple Pulmonary Nodules: Analysis from Multicentric Cohorts

被引:32
作者
Chen, Kezhong [1 ]
Nie, Yuntao [1 ]
Park, Samina [2 ]
Zhang, Kai [1 ]
Zhang, Yangming [3 ]
Liu, Yuan [4 ]
Hui, Bengang [5 ]
Zhou, Lixin [1 ]
Wang, Xun [1 ]
Qi, Qingyi [6 ]
Li, Hao [1 ]
Kang, Guannan [1 ]
Huang, Yuqing [7 ]
Chen, Yingtai [8 ]
Liu, Jiabao [9 ]
Cui, Jian [10 ]
Li, Mingru [11 ]
Park, In Kyu [2 ]
Kang, Chang Hyun [2 ]
Shen, Haifeng [1 ]
Yang, Yingshun [7 ]
Guan, Tian [1 ]
Zhang, Yaxiao [9 ]
Yang, Fan [1 ]
Kim, Young Tae [2 ]
Wang, Jun [1 ]
机构
[1] Peking Univ Peoples Hosp, Dept Thorac Surg, Beijing, Peoples R China
[2] Seoul Natl Univ, Seoul Natl Univ Hosp, Dept Thorac & Cardiovasc Surg, Coll Med, Seoul, South Korea
[3] Chinese Acad Sci, Shenzhen Inst Adv Technol, Inst Synthet Biol, Shenzhen, Peoples R China
[4] Peking Univ, Beijing Natl Lab Mol Sci, Coll Chem & Mol Engn,Minist Educ, Synthet & Funct Biomol Ctr,Key Lab Bioorgan Chem, Beijing, Peoples R China
[5] Air Force Med Univ, Tangdu Hosp, Dept Thorac Surg, Xian, Peoples R China
[6] Peking Univ Peoples Hosp, Dept Radiol, Beijing, Peoples R China
[7] Beijing Haidian Hosp, Dept Thorac Surg, Beijing, Peoples R China
[8] Beijing Aerosp Gen Hosp, Dept Thorac Surg, Beijing, Peoples R China
[9] First Hosp Shijiazhuang, Dept Thorac Surg, Shijiazhuang, Hebei, Peoples R China
[10] Beijing Chuiyangliu Hosp, Dept Thorac Surg, Beijing, Peoples R China
[11] Aerosp 731 Hosp, Dept Thorac Surg, Beijing, Peoples R China
关键词
LUNG-CANCER; PROBABILITY; PERFORMANCE; MANAGEMENT;
D O I
10.1158/1078-0432.CCR-20-4007
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: Nodule evaluation is challenging and critical to diagnose multiple pulmonary nodules (MPNs). We aimed to develop and validate a machine learning-based model to estimate the malignant probability of MPNs to guide decision-making. Experimental Design: Aboosted ensemble algorithm (XGBoost) was used to predict malignancy using the clinicoradiologic variables of 1,739 nodules from 520 patients with MPNs at a Chinese center. The model (PKU-M model) was trained using 10-fold cross-validation in which hyperparameters were selected and fine-tuned. The model was validated and compared with solitary pulmonary nodule (SPN) models, clinicians, and a computer-aided diagnosis (CADx) system in an independent transnational cohort and a prospective multicentric cohort. Results: The PKU-M model showed excellent discrimination [area under the curve; AUC (95% confidence interval (95% CI)), 0.909 (0.854-0.946)] and calibration (Brier score, 0.122) in the development cohort. External validation (583 nodules) revealed that the AUC of the PKU-M model was 0.890 (0.859-0.916), higher than those of the Brock model [0.806 (0.771-0.838)], PKU model [0.780 (0.743-0.817)], Mayo model [0.739 (0.697-0.776)], and VA model [0.682 (0.640-0.722)]. Prospective comparison (200 nodules) showed that the AUC of the PKU-M model [0.871 (0.815-0.915)] was higher than that of surgeons [0.790 (0.711-0.852), 0.741 (0.662-0.804), and 0.727 (0.650-0.788)], radiologist [0.748 (0.671-0.814)], and the CADx system[0.757 (0.682-0.818)]. Furthermore, themodel outperformed the clinicians with an increase of 14.3% in sensitivity and 7.8% in specificity. Conclusions: After its development using machine learning algorithms, validation using transnational multicentric cohorts, and prospective comparison with clinicians and the CADx system, this novel prediction model for MPNs presented solid performance as a convenient reference to help decision-making.
引用
收藏
页码:2255 / 2265
页数:11
相关论文
共 36 条
[1]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[2]   External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules [J].
Baldwin, David R. ;
Gustafson, Jennifer ;
Pickup, Lyndsey ;
Arteta, Carlos ;
Novotny, Petr ;
Declerck, Jerome ;
Kadir, Timor ;
Figueiras, Catarina ;
Sterba, Albert ;
Exell, Alan ;
Potesil, Vaclav ;
Holland, Paul ;
Spence, Hazel ;
Clubley, Alison ;
O'Dowd, Emma ;
Clark, Matthew ;
Ashford-Turner, Victoria ;
Callister, Matthew E. J. ;
Gleeson, Fergus, V .
THORAX, 2020, 75 (04) :306-312
[3]   British Thoracic Society guidelines for the investigation and management of pulmonary nodules [J].
Callister, M. E. J. ;
Baldwin, D. R. ;
Akram, A. R. ;
Barnard, S. ;
Cane, P. ;
Draffan, J. ;
Franks, K. ;
Gleeson, F. ;
Graham, R. ;
Malhotra, P. ;
Prokop, M. ;
Rodger, K. ;
Subesinghe, M. ;
Waller, D. ;
Woolhouse, I. .
THORAX, 2015, 70 :1-54
[4]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[5]   Pure ground glass nodular adenocarcinomas: Are preoperative positron emission tomography/computed tomography and brain magnetic resonance imaging useful or necessary? [J].
Cho, Hyoun ;
Lee, Ho Yun ;
Kim, Jhingook ;
Kim, Hong Kwan ;
Choi, Joon Young ;
Um, Sang-Won ;
Lee, Kyung Soo .
JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2015, 150 (03) :514-520
[6]   Towards automatic pulmonary nodule management in lung cancer screening with deep learning [J].
Ciompi, Francesco ;
Chung, Kaman ;
van Riel, Sarah J. ;
Setio, Arnaud Arindra Adiyoso ;
Gerke, Paul K. ;
Jacobs, Colin ;
Scholten, Ernst Th. ;
Schaefer-Prokop, Cornelia ;
Wille, Mathilde M. W. ;
Marchiano, Alfonso ;
Pastorino, Ugo ;
Prokop, Mathias ;
van Ginneken, Bram .
SCIENTIFIC REPORTS, 2017, 7
[7]  
Collins GS, 2015, BMJ-BRIT MED J, V350, DOI [10.1136/bmj.g7594, 10.1111/1471-0528.13244]
[8]  
Corder G, 2009, NONPARAMETRIC STAT N, DOI 10.1002/9781118165881
[9]   Accuracy of FDG-PET to Diagnose Lung Cancer in a Region of Endemic Granulomatous Disease [J].
Deppen, Stephen ;
Putnam, Joe B., Jr. ;
Andrade, Gabriela ;
Speroff, Theodore ;
Nesbitt, Jonathan C. ;
Lambright, Eric S. ;
Massion, Pierre P. ;
Walker, Ron ;
Grogan, Eric L. .
ANNALS OF THORACIC SURGERY, 2011, 92 (02) :428-433
[10]   Predicting Lung Cancer Prior to Surgical Resection in Patients with Lung Nodules [J].
Deppen, Stephen A. ;
Blume, Jeffrey D. ;
Aldrich, Melinda C. ;
Fletcher, Sarah A. ;
Massion, Pierre P. ;
Walker, Ronald C. ;
Chen, Heidi C. ;
Speroff, Theodore ;
Degesys, Catherine A. ;
Pinkerman, Rhonda ;
Lambright, Eric S. ;
Nesbitt, Jonathan C. ;
Putnam, Joe B., Jr. ;
Grogan, Eric L. .
JOURNAL OF THORACIC ONCOLOGY, 2014, 9 (10) :1477-1484