Gyrokinetic equations in an extended ordering

被引:19
作者
Dimits, Andris M. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
plasma kinetic theory; plasma magnetohydrodynamics; plasma transport processes; TURBULENCE; TRANSPORT; SIMULATION; STABILITY;
D O I
10.1063/1.3327211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A gyrokinetic theory has been developed in an extended ordering in which the small parameter is the ratio of the ExB shearing rate to the gyrofrequency. This allows for long wavelength ExB flows of order of the thermal velocity, instead of the more restrictive standard orderings which either require that the electrostatic potential or the ExB flow velocity be small compared with the thermal levels. This theory generalizes prior work to allow for time dependence in the large long-wavelength component of the electric field and a continuum of scales in the field components rather than just two distinct components. In the new theory, a significant part of the polarization drift now resides in the equations of motion. However, there is still an identifiable polarization density that can be used to solve for the electrostatic potential from a quasineutrality or vorticity equation. The present derivation is carried out for the case of electrostatic perturbations and a slab equilibrium magnetic field, as this is sufficient and most clear for demonstrating the new results and issues associated specifically with the extended ordering. (C) 2010 American Institute of Physics. [doi:10.1063/1.3327211]
引用
收藏
页数:7
相关论文
共 27 条
[1]   NONLINEAR ELECTROMAGNETIC GYROKINETIC EQUATIONS FOR ROTATING AXISYMMETRICAL PLASMAS [J].
ARTUN, M ;
TANG, WM .
PHYSICS OF PLASMAS, 1994, 1 (08) :2682-2692
[2]   Foundations of nonlinear gyrokinetic theory [J].
Brizard, A. J. ;
Hahm, T. S. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :421-468
[3]   NONLINEAR GYROKINETIC VLASOV EQUATION FOR TOROIDALLY ROTATING AXISYMMETRICAL TOKAMAKS [J].
BRIZARD, AJ .
PHYSICS OF PLASMAS, 1995, 2 (02) :459-471
[4]   An Eulerian gyrokinetic-Maxwell solver [J].
Candy, J ;
Waltz, RE .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 186 (02) :545-581
[5]   Compressed ion temperature gradient turbulence in diverted tokamak edge [J].
Chang, C. S. ;
Ku, S. ;
Diamond, P. H. ;
Lin, Z. ;
Parker, S. ;
Hahm, T. S. ;
Samatova, N. .
PHYSICS OF PLASMAS, 2009, 16 (05)
[6]   Gyrokinetic turbulence simulations with kinetic electrons [J].
Chen, Y ;
Parker, S .
PHYSICS OF PLASMAS, 2001, 8 (05) :2095-2100
[7]   Scalings of ion-temperature-gradient-driven anomalous transport in tokamaks [J].
Dimits, AM ;
Williams, TJ ;
Byers, JA ;
Cohen, BI .
PHYSICAL REVIEW LETTERS, 1996, 77 (01) :71-74
[8]   GYROAVERAGED EQUATIONS FOR BOTH THE GYROKINETIC AND DRIFT-KINETIC REGIMES [J].
DIMITS, AM ;
LODESTRO, LL ;
DUBIN, DHE .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (01) :274-277
[9]   Comparisons and physics basis of tokamak transport models and turbulence simulations [J].
Dimits, AM ;
Bateman, G ;
Beer, MA ;
Cohen, BI ;
Dorland, W ;
Hammett, GW ;
Kim, C ;
Kinsey, JE ;
Kotschenreuther, M ;
Kritz, AH ;
Lao, LL ;
Mandrekas, J ;
Nevins, WM ;
Parker, SE ;
Redd, AJ ;
Shumaker, DE ;
Sydora, R ;
Weiland, J .
PHYSICS OF PLASMAS, 2000, 7 (03) :969-983
[10]   Electron temperature gradient turbulence [J].
Dorland, W ;
Jenko, F ;
Kotschenreuther, M ;
Rogers, BN .
PHYSICAL REVIEW LETTERS, 2000, 85 (26) :5579-5582