Compressive strain induced enhancement in thermoelectric-power-factor in monolayer MoS2 nanosheet

被引:42
作者
Dimple, Nityasagar Jena [1 ]
De Sarkar, Abir [1 ]
机构
[1] Inst Nano Sci & Technol, Phase 10,Sect 64, Mohali 160062, Punjab, India
关键词
thermoelectric power factor; strain; Seebeck coefficient; band gap; TRANSITION-METAL DICHALCOGENIDES; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; FEW-LAYER MOS2; SINGLE-LAYER; CARRIER MOBILITY; BIAXIAL STRAIN; PERFORMANCE; SUPERCONDUCTIVITY; PIEZOELECTRICITY;
D O I
10.1088/1361-648X/aa6cbc
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Strain and temperature induced tunability in the thermoelectric properties in monolayer MoS2 (ML-MoS2) has been demonstrated using density functional theory coupled to semi-classical Boltzmann transport theory. Compressive strain, in general and uniaxial compressive strain (along the zig-zag direction), in particular, is found to be most effective in enhancing the thermoelectric power factor, owing to the higher electronic mobility and its sensitivity to lattice compression along this direction. Variation in the Seebeck coefficient and electronic band gap with strain is found to follow the Goldsmid-Sharp relation. n-type doping is found to raise the relaxation time-scaled thermoelectric power factor higher than p-type doping and this divide widens with increasing temperature. The relaxation time-scaled thermoelectric power factor in optimally n-doped ML-MoS2 is found to undergo maximal enhancement under the application of 3% uniaxial compressive strain along the zig-zag direction, when both the (direct) electronic band gap and the Seebeck coefficient reach their maximum, while the electron mobility drops down drastically from 73.08 to 44.15 cm(2) V-1 s(-1). Such strain sensitive thermoelectric responses in ML-MoS2 could open doorways for a variety of applications in emerging areas in 2D-thermoelectrics, such as on-chip thermoelectric power generation and waste thermal energy harvesting.
引用
收藏
页数:7
相关论文
共 63 条
[1]   Two-dimensional flexible nanoelectronics [J].
Akinwande, Deji ;
Petrone, Nicholas ;
Hone, James .
NATURE COMMUNICATIONS, 2014, 5
[2]   A Comparative Study of Lattice Dynamics of Three- and Two-Dimensional MoS2 [J].
Ataca, C. ;
Topsakal, M. ;
Akturk, E. ;
Ciraci, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (33) :16354-16361
[3]   Large theoretical thermoelectric power factor of suspended single-layer MoS2 [J].
Babaei, Hasan ;
Khodadadi, J. M. ;
Sinha, Sanjiv .
APPLIED PHYSICS LETTERS, 2014, 105 (19)
[4]   DEFORMATION POTENTIALS AND MOBILITIES IN NON-POLAR CRYSTALS [J].
BARDEEN, J ;
SHOCKLEY, W .
PHYSICAL REVIEW, 1950, 80 (01) :72-80
[5]   Intercalation chemistry of molybdenum disulfide [J].
Benavente, E ;
Santa Ana, MA ;
Mendizábal, F ;
González, G .
COORDINATION CHEMISTRY REVIEWS, 2002, 224 (1-2) :87-109
[6]   Stretching and Breaking of Ultrathin MoS2 [J].
Bertolazzi, Simone ;
Brivio, Jacopo ;
Kis, Andras .
ACS NANO, 2011, 5 (12) :9703-9709
[7]   Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS2 [J].
Bhattacharyya, Swastibrata ;
Pandey, Tribhuwan ;
Singh, Abhishek K. .
NANOTECHNOLOGY, 2014, 25 (46)
[8]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[9]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[10]   Large and Tunable Photothermoelectric Effect in Single-Layer MoS2 [J].
Buscema, Michele ;
Barkelid, Maria ;
Zwiller, Val ;
van der Zant, Herre S. J. ;
Steele, Gary A. ;
Castellanos-Gomez, Andres .
NANO LETTERS, 2013, 13 (02) :358-363