Pre-existing and machine learning-based models for cardiovascular risk prediction

被引:29
作者
Cho, Sang-Yeong [1 ]
Kim, Sun-Hwa [2 ]
Kang, Si-Hyuck [2 ,3 ]
Lee, Kyong Joon [4 ]
Choi, Dongjun [4 ]
Kang, Seungjin [5 ]
Park, Sang Jun [6 ]
Kim, Tackeun [7 ]
Yoon, Chang-Hwan [2 ,3 ]
Youn, Tae-Jin [2 ,3 ]
Chae, In-Ho [2 ,3 ]
机构
[1] Gyeongsang Natl Univ, Sch Med, Dept Cardiol, Chang Won, South Korea
[2] Gyeongsang Natl Univ, Changwon Hosp, Chang Won, South Korea
[3] Seoul Natl Univ, Bundang Hosp, Cardiovasc Ctr, Internal Med, 82 Gumi Ro 173 Beon Gil, Seongnam Si 13620, Gyeonggi Do, South Korea
[4] Seoul Natl Univ, Dept Internal Med, Seoul, South Korea
[5] Seoul Natl Univ, Bundang Hosp, Coll Med, Dept Radiol, Seongnam Si, South Korea
[6] Seoul Natl Univ, Bundang Hosp, Off eHlth Res & Businesses, Seongnam Si, South Korea
[7] Seoul Natl Univ, Bundang Hosp, Coll Med, Dept Neurosurg, Seongnam Si, South Korea
基金
新加坡国家研究基金会;
关键词
ASSOCIATION TASK-FORCE; AMERICAN-COLLEGE; HEALTH-CARE; DISEASE; VALIDATION; PREVENTION; GUIDELINES; MANAGEMENT;
D O I
10.1038/s41598-021-88257-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predicting the risk of cardiovascular disease is the key to primary prevention. Machine learning has attracted attention in analyzing increasingly large, complex healthcare data. We assessed discrimination and calibration of pre-existing cardiovascular risk prediction models and developed machine learning-based prediction algorithms. This study included 222,998 Korean adults aged 40-79 years, naive to lipid-lowering therapy, had no history of cardiovascular disease. Pre-existing models showed moderate to good discrimination in predicting future cardiovascular events (C-statistics 0.70-0.80). Pooled cohort equation (PCE) specifically showed C-statistics of 0.738. Among other machine learning models such as logistic regression, treebag, random forest, and adaboost, the neural network model showed the greatest C-statistic (0.751), which was significantly higher than that for PCE. It also showed improved agreement between the predicted risk and observed outcomes (Hosmer-Lemeshow chi(2)=86.1, P<0.001) than PCE for whites did (Hosmer-Lemeshow chi(2)=171.1, P<0.001). Similar improvements were observed for Framingham risk score, systematic coronary risk evaluation, and QRISK3. This study demonstrated that machine learning-based algorithms could improve performance in cardiovascular risk prediction over contemporary cardiovascular risk models in statin-naive healthy Korean adults without cardiovascular disease. The model can be easily adopted for risk assessment and clinical decision making.
引用
收藏
页数:10
相关论文
共 42 条
[1]   Cardiovascular Event Prediction by Machine Learning The Multi-Ethnic Study of Atherosclerosis [J].
Ambale-Venkatesh, Bharath ;
Yang, Xiaoying ;
Wu, Colin O. ;
Liu, Kiang ;
Hundley, W. Gregory ;
McClelland, Robyn ;
Gomes, Antoinette S. ;
Folsom, Aaron R. ;
Shea, Steven ;
Guallar, Eliseo ;
Bluemke, David A. ;
Lima, Joao A. C. .
CIRCULATION RESEARCH, 2017, 121 (09) :1092-+
[2]  
[Anonymous], 2021, IEEE Trans. Broadcast.
[3]  
Benjamin EJ, 2019, CIRCULATION, V139, pE56, DOI [10.1161/CIR.0000000000000659, 10.1161/CIR.0000000000000746]
[4]   Statistical thinking, machine learning [J].
Bian, Jiang ;
Buchan, Iain ;
Guo, Yi ;
Prosperi, Mattia .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2019, 116 :136-137
[5]  
Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350
[6]   2016 ESC/EAS Guidelines for the Management of Dyslipidaemias [J].
Catapano, Alberico L. ;
Graham, Ian ;
De Backer, Guy ;
Wiklund, Olov ;
Chapman, M. John ;
Drexel, Heinz ;
Hoes, Arno W. ;
Jennings, Catriona S. ;
Landmesser, Ulf ;
Pedersen, Terje R. ;
Reiner, Zeljko ;
Riccardi, Gabriele ;
Taskinen, Marja-Riita ;
Tokgozoglu, Lale ;
Monique, W. M. ;
Verschuren, W. M. Monique ;
Vlachopoulos, Charalambos ;
Wood, David A. ;
Luis Zamorano, Jose .
EUROPEAN HEART JOURNAL, 2016, 37 (39) :2999-+
[7]   Implementing Machine Learning in Health Care - Addressing Ethical Challenges [J].
Char, Danton S. ;
Shah, Nigam H. ;
Magnus, David .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (11) :981-983
[8]   Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study [J].
Chilamkurthy, Sasank ;
Ghosh, Rohit ;
Tanamala, Swetha ;
Biviji, Mustafa ;
Campeau, Norbert G. ;
Venugopal, Vasantha Kumar ;
Mahajan, Vidur ;
Rao, Pooja ;
Warier, Prashant .
LANCET, 2018, 392 (10162) :2388-2396
[9]   A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models [J].
Christodoulou, Evangelia ;
Ma, Jie ;
Collins, Gary S. ;
Steyerberg, Ewout W. ;
Verbakel, Jan Y. ;
Van Calster, Ben .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2019, 110 :12-22
[10]   Estimation of ten-year risk of fatal cardiovascular disease in Europe:: the SCORE project [J].
Conroy, RM ;
Pyörälä, K ;
Fitzgerald, AP ;
Sans, S ;
Menotti, A ;
De Backer, G ;
De Bacquer, D ;
Ducimetière, P ;
Jousilahti, P ;
Keil, U ;
Njolstad, I ;
Oganov, RG ;
Thomsen, T ;
Tunstall-Pedoe, H ;
Tverdal, A ;
Wedel, H ;
Whincup, P ;
Wilhelmsen, L ;
Graham, IM .
EUROPEAN HEART JOURNAL, 2003, 24 (11) :987-1003