Surfactant-Mediated Resistance to Surface Oxidation in MnO Nanostructures

被引:11
作者
Debnath, Bharati [1 ,2 ]
Salunke, Hemant G. [3 ]
Shivaprasad, Sonnada M. [4 ,5 ]
Bhattacharyya, Sayan [1 ,2 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Chem Sci, Kolkata 741246, Mohanpur, India
[2] Indian Inst Sci Educ & Res, Ctr Adv Funct Mat, Kolkata 741246, Mohanpur, India
[3] Bhabha Atom Res Ctr, Tech Phys Div, Bombay 400085, Maharashtra, India
[4] Jawaharlal Nehru Ctr Adv Sci Res, Int Ctr Mat Sci, Bangalore 560064, Karnataka, India
[5] Jawaharlal Nehru Ctr Adv Sci Res, Chem & Phys Mat Unit, Bangalore 560064, Karnataka, India
关键词
EXCHANGE BIAS; MN3O4; NANOCRYSTALS; NANOPARTICLES; SIZE; PERFORMANCE; NANOCUBES; MORPHOLOGY; REDUCTION; GROWTH; SHAPE;
D O I
10.1021/acsomega.7b00622
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The intrinsic physical properties of nanostructures of metals and their oxides are altered when they are prone to surface oxidation in ambient atmosphere. To overcome this limitation, novel synthesis methodologies are required. In this study, solid octahedral shapes of MnO limit the inward oxygen diffusion compared to that of the MnO-nanoparticle-assembled octahedra. In addition to morphology control, which restricts the thickness of the Mn3O4 surface layer, the binding chemistry of the surfactants plays an essential role. For example, the Mn3O4 surface layer is 0.4 nm thinner with trioctylphosphine oxide than with trioctylamine as the surfactant. The nanostructures were prepared by varying the surfactants, surfactant-to-precursor molar ratio, accelerating agent, and reaction heating rate. The surface oxidation of MnO nano-octahedra was probed by Rietveld analysis of X-ray diffraction patterns and X-ray photoelectron spectroscopy and characterized by magnetic measurements, as the presence of ferrimagnetic Mn3O4 shell on the antiferromagnetic MnO core provides an exchange coupling at the core-shell interface. Thicker the Mn3O4 shell, higher is the exchange-biased hysteresis loop shift.
引用
收藏
页码:3028 / 3035
页数:8
相关论文
共 36 条
[1]   Low-Surface Energy Surfactants with Branched Hydrocarbon Architectures [J].
Alexander, Shirin ;
Smith, Gregory N. ;
James, Craig ;
Rogers, Sarah E. ;
Guittard, Frederic ;
Sagisaka, Masanobu ;
Eastoe, Julian .
LANGMUIR, 2014, 30 (12) :3413-3421
[2]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Grosvenor, Andrew P. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2717-2730
[3]   Exchange Bias in Fe@Cr Core-Shell Nanoparticles [J].
Binns, Chris ;
Qureshi, Muhammad T. ;
Peddis, Davide ;
Baker, Stephen H. ;
Howes, Paul B. ;
Boatwright, Adrian ;
Cavill, Stuart A. ;
Dhesi, Sarnjeet S. ;
Lari, Leonardo ;
Kroeger, Roland ;
Langridge, Sean .
NANO LETTERS, 2013, 13 (07) :3334-3339
[4]   Controlled Growth and Magnetic Property of FePt Nanostructure: Cuboctahedron, Octapod, Truncated Cube, and Cube [J].
Chou, Shang-Wei ;
Zhu, Chun-Ling ;
Neeleshwar, Sonnathi ;
Chen, Cheng-Lung ;
Chen, Yang-Yuan ;
Chen, Chia-Chun .
CHEMISTRY OF MATERIALS, 2009, 21 (20) :4955-4961
[5]   Enhancement of Magnetization through Interface Exchange Interactions of Confined NiO Nanoparticles within the Mesopores of CoFe2O4 [J].
Debnath, Bharati ;
Bansal, Aprajita ;
Salunke, Hemant G. ;
Sadhu, Anustup ;
Bhattacharyya, Sayan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (10) :5523-5533
[6]   Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor [J].
Deng, Suzi ;
Tjoa, Verawati ;
Fan, Hai Ming ;
Tan, Hui Ru ;
Sayle, Dean C. ;
Olivo, Malini ;
Mhaisalkar, Subodh ;
Wei, Jun ;
Sow, Chorng Haur .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (10) :4905-4917
[7]   Enhanced Supercapacitor Performance of Mn3O4 Nanocrystals by Doping Transition-Metal Ions [J].
Dong, Ruiting ;
Ye, Qinglan ;
Kuang, Lili ;
Lu, Xu ;
Zhang, Ying ;
Zhang, Xue ;
Tan, Guojin ;
Wen, Yanxuan ;
Wang, Fan .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (19) :9508-9516
[8]   Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)2]2 [J].
Dumestre, F ;
Chaudret, B ;
Amiens, C ;
Renaud, P ;
Fejes, P .
SCIENCE, 2004, 303 (5659) :821-823
[9]   Spin-glass-like ordering in ε-Fe3-xNixN (0.1 ≤ x ≤ 0.8) nanoparticles [J].
Gajbhiye, N. S. ;
Bhattacharyya, Sayan .
MATERIALS CHEMISTRY AND PHYSICS, 2008, 108 (2-3) :201-207
[10]   Synthesis, characterization and magnetic interactions study of ε-Fe3N-CrN nanorods [J].
Gajbhiye, N. S. ;
Bhattacharyya, Sayan ;
Shivaprasad, S. M. ;
Weissmuller, J. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (06) :1836-1840