The non-abelian tensor product and the second homology of Leibniz algebras

被引:3
|
作者
Hosseini, Seyedeh Narges [1 ]
Edalatzadeh, Behrouz [2 ]
Salemkar, Ali Reza [1 ]
机构
[1] Shahid Beheshti Univ, Fac Math Sci, GC, Tehran, Iran
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah, Iran
关键词
Leibniz homology; non-abelian tensor product; nilpotent Leibniz algebras; SCHUR MULTIPLIER;
D O I
10.1080/00927872.2019.1659288
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the theories of groups and Lie algebras, investigations of the properties of the non-abelian tensor product and their relations to the second homology groups are worthwhile. It is the purpose of the present paper to exhibit such investigations about the non-abelian tensor product of Leibniz algebras. The isomorphism between the non-abelian tensor square and non-abelian exterior square of a Lie algebra L, will enable us to set a simple connection between and . Furthermore, we shall relate the concepts of capability and solvability of a Leibniz algebra to its tensor square. Finally, we give an upper bound for the dimension of the non-abelian tensor square and the second homology of a nilpotent Leibniz algebra in terms of the dimension of its center and derived subalgebra.
引用
收藏
页码:759 / 770
页数:12
相关论文
共 50 条
  • [41] Finiteness of homotopy groups related to the non-abelian tensor product
    Bastos, Raimundo
    Rocco, Norai R.
    Vieira, Ewerton R.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (06) : 2081 - 2091
  • [42] THE NON-ABELIAN TENSOR PRODUCT OF FINITE-GROUPS IS FINITE
    ELLIS, GJ
    JOURNAL OF ALGEBRA, 1987, 111 (01) : 203 - 205
  • [43] The non-Abelian tensor multiplet
    Gustavsson, Andreas
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07):
  • [44] The Non-Abelian Tensor and Exterior Products of Crossed Modules of Lie Algebras
    Ravanbod, Hajar
    Salemkar, Ali Reza
    JOURNAL OF LIE THEORY, 2018, 28 (01) : 169 - 185
  • [45] On the Dimension of Non-Abelian Tensor Squares of n-Lie Algebras
    Akbarossadat, Nafiseh
    Saeedi, Farshid
    TAMKANG JOURNAL OF MATHEMATICS, 2021, 52 (03): : 363 - 381
  • [46] Closed algebras for higher rank, non-Abelian tensor gauge fields
    Konitopoulos, Spyros
    NUCLEAR PHYSICS B, 2021, 963
  • [47] The non-Abelian tensor multiplet
    Andreas Gustavsson
    Journal of High Energy Physics, 2018
  • [48] Some notes on the second homology of Leibniz algebras
    Edalatzadeh, Behrouz
    Veisi, Banafsheh
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (03) : 1011 - 1017
  • [49] On the second homology group of extended Leibniz algebras
    Gnedbaye, Allahtan Victor
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (05) : 468 - 474
  • [50] Abelian and non-Abelian quantum geometric tensor
    Ma, Yu-Quan
    Chen, Shu
    Fan, Heng
    Liu, Wu-Ming
    PHYSICAL REVIEW B, 2010, 81 (24)