The non-abelian tensor product and the second homology of Leibniz algebras

被引:3
|
作者
Hosseini, Seyedeh Narges [1 ]
Edalatzadeh, Behrouz [2 ]
Salemkar, Ali Reza [1 ]
机构
[1] Shahid Beheshti Univ, Fac Math Sci, GC, Tehran, Iran
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah, Iran
关键词
Leibniz homology; non-abelian tensor product; nilpotent Leibniz algebras; SCHUR MULTIPLIER;
D O I
10.1080/00927872.2019.1659288
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the theories of groups and Lie algebras, investigations of the properties of the non-abelian tensor product and their relations to the second homology groups are worthwhile. It is the purpose of the present paper to exhibit such investigations about the non-abelian tensor product of Leibniz algebras. The isomorphism between the non-abelian tensor square and non-abelian exterior square of a Lie algebra L, will enable us to set a simple connection between and . Furthermore, we shall relate the concepts of capability and solvability of a Leibniz algebra to its tensor square. Finally, we give an upper bound for the dimension of the non-abelian tensor square and the second homology of a nilpotent Leibniz algebra in terms of the dimension of its center and derived subalgebra.
引用
收藏
页码:759 / 770
页数:12
相关论文
共 50 条
  • [22] On non-Abelian Leibniz cohomology
    Khmaladze E.
    Journal of Mathematical Sciences, 2013, 195 (4) : 481 - 485
  • [23] NON-ABELIAN HOMOLOGY OF HOM-LIE ALGEBRAS AND APPLICATIONS
    Casas, J. M.
    Khmaladze, E.
    Rego, N. Pacheco
    PROCEEDINGS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2015, 167 : 99 - 106
  • [24] Crossed Modules and Non-Abelian Extensions of Differential Leibniz Conformal Algebras
    Wu, Hui
    Guo, Shuangjian
    Zhang, Xiaohui
    AXIOMS, 2024, 13 (10)
  • [25] THE NON-ABELIAN TENSOR SQUARE OF A FREE PRODUCT OF GROUPS
    GILBERT, ND
    ARCHIV DER MATHEMATIK, 1987, 48 (05) : 369 - 375
  • [26] ON HOMOLOGY SEQUENCE IN NON-ABELIAN HOMOLOGY
    FUKAWA, M
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1970, 242 : 91 - &
  • [27] The non-abelian tensor product of polycyclic groups is polycyclic
    Moravec, Primoz
    JOURNAL OF GROUP THEORY, 2007, 10 (06) : 795 - 798
  • [28] On some closure properties of the non-abelian tensor product
    Donadze, G.
    Ladra, M.
    Thomas, V. Z.
    JOURNAL OF ALGEBRA, 2017, 472 : 399 - 413
  • [29] Finiteness conditions for the non-abelian tensor product of groups
    Bastosl, R.
    Nakaoka, I. N.
    Rocco, N. R.
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (04): : 603 - 615
  • [30] Finiteness conditions for the non-abelian tensor product of groups
    R. Bastos
    I. N. Nakaoka
    N. R. Rocco
    Monatshefte für Mathematik, 2018, 187 : 603 - 615