The non-abelian tensor product and the second homology of Leibniz algebras

被引:3
作者
Hosseini, Seyedeh Narges [1 ]
Edalatzadeh, Behrouz [2 ]
Salemkar, Ali Reza [1 ]
机构
[1] Shahid Beheshti Univ, Fac Math Sci, GC, Tehran, Iran
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah, Iran
关键词
Leibniz homology; non-abelian tensor product; nilpotent Leibniz algebras; SCHUR MULTIPLIER;
D O I
10.1080/00927872.2019.1659288
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the theories of groups and Lie algebras, investigations of the properties of the non-abelian tensor product and their relations to the second homology groups are worthwhile. It is the purpose of the present paper to exhibit such investigations about the non-abelian tensor product of Leibniz algebras. The isomorphism between the non-abelian tensor square and non-abelian exterior square of a Lie algebra L, will enable us to set a simple connection between and . Furthermore, we shall relate the concepts of capability and solvability of a Leibniz algebra to its tensor square. Finally, we give an upper bound for the dimension of the non-abelian tensor square and the second homology of a nilpotent Leibniz algebra in terms of the dimension of its center and derived subalgebra.
引用
收藏
页码:759 / 770
页数:12
相关论文
共 18 条
  • [1] Bloh A., 1965, Dokl. Akad. Nauk SSSR, V165, P471
  • [2] Bloh A.M., 1967, Dokl. Akad. Nauk SSSR, V175, P824
  • [3] ON UNIVERSAL CENTRAL EXTENSIONS OF LEIBNIZ ALGEBRAS
    Casas, J. M.
    Corral, N.
    [J]. COMMUNICATIONS IN ALGEBRA, 2009, 37 (06) : 2104 - 2120
  • [4] Casas J.M., 2002, Georgian Math. J., V9, P659
  • [5] A non-abelian exterior product and homology of Leibniz algebras
    Donadze, Guram
    Garcia-Martinez, Xabier
    Khmaladze, Emzar
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2018, 31 (01): : 217 - 236
  • [6] Characterizing nilpotent Leibniz algebras by a new bound on their second homologies
    Edalatzadeh, Behrouz
    Hosseini, Seyedeh Narges
    [J]. JOURNAL OF ALGEBRA, 2018, 511 : 486 - 498
  • [7] Some notes on the second homology of Leibniz algebras
    Edalatzadeh, Behrouz
    Veisi, Banafsheh
    [J]. COMMUNICATIONS IN ALGEBRA, 2018, 46 (03) : 1011 - 1017
  • [8] Leibniz algebras with small derived ideal
    Edalatzadeh, Behrouz
    Pourghobadian, Parisa
    [J]. JOURNAL OF ALGEBRA, 2018, 501 : 215 - 224
  • [9] A NON-ABELIAN TENSOR PRODUCT OF LIE-ALGEBRAS
    ELLIS, GJ
    [J]. GLASGOW MATHEMATICAL JOURNAL, 1991, 33 : 101 - 120
  • [10] A non-abelian tensor product of Leibniz algebras
    Gnedbaye, AV
    [J]. ANNALES DE L INSTITUT FOURIER, 1999, 49 (04) : 1149 - +