Generalized synchronization of chaos in electronic circuit experiments

被引:61
作者
Kittel, A
Parisi, J
Pyragas, K
机构
[1] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany
[2] Univ Bayreuth, Sonderforsch Bereich 279, D-95440 Bayreuth, Germany
[3] Inst Semicond Phys, LT-2600 Vilnius, Lithuania
关键词
chaos; synchronization; coupled subsystems;
D O I
10.1016/S0167-2789(97)00186-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two examples of one-way coupled electronic circuits displaying generalized synchronization of chaos are considered. In one of them, the dynamics of both the response and the driving systems represent a double-scroll chaos oscillator. In another example, the double-scroll oscillator is driven by an electronic analog of the Mackey-Glass system. To detect the generalized synchronization, an auxiliary response system that is a replica of the original one is used. In these systems, we have discovered two types of generalized synchronization, namely, a strong and a weak synchronization, which correspond to the existence of a smooth and a nonsmooth map from the trajectories of the driving attractor to the trajectories of the response system, respectively.
引用
收藏
页码:459 / 471
页数:13
相关论文
共 39 条
[1]   THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS [J].
ABARBANEL, HDI ;
BROWN, R ;
SIDOROWICH, JJ ;
TSIMRING, LS .
REVIEWS OF MODERN PHYSICS, 1993, 65 (04) :1331-1392
[2]   Generalized synchronization of chaos: The auxiliary system approach [J].
Abarbanel, HDI ;
Rulkov, NF ;
Sushchik, MM .
PHYSICAL REVIEW E, 1996, 53 (05) :4528-4535
[3]  
Afraimovich V. S., 1986, Radiophysics and Quantum Electronics, V29, P795, DOI 10.1007/BF01034476
[4]   DIMENSION INCREASE IN FILTERED CHAOTIC SIGNALS [J].
BADII, R ;
BROGGI, G ;
DERIGHETTI, B ;
RAVANI, M ;
CILIBERTO, S ;
POLITI, A ;
RUBIO, MA .
PHYSICAL REVIEW LETTERS, 1988, 60 (11) :979-982
[5]   A QUANTITATIVE MEASUREMENT OF SPATIAL ORDER IN VENTRICULAR-FIBRILLATION [J].
BAYLY, PV ;
JOHNSON, EE ;
WOLF, PD ;
GREENSIDE, HS ;
SMITH, WM ;
IDEKER, RE .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 1993, 4 (05) :533-546
[6]   MODELING AND SYNCHRONIZING CHAOTIC SYSTEMS FROM TIME-SERIES DATA [J].
BROWN, R ;
RULKOV, NF ;
TRACY, ER .
PHYSICAL REVIEW E, 1994, 49 (05) :3784-3800
[7]   SYNCHRONIZING CHAOTIC SYSTEMS USING FILTERED SIGNALS [J].
CARROLL, TL .
PHYSICAL REVIEW E, 1994, 50 (04) :2580-2587
[8]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[9]   ESTIMATING CORRELATION DIMENSION FROM A CHAOTIC TIME-SERIES - WHEN DOES PLATEAU ONSET OCCUR [J].
DING, MZ ;
GREBOGI, C ;
OTT, E ;
SAUER, T ;
YORKE, JA .
PHYSICA D, 1993, 69 (3-4) :404-424
[10]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47