Creation of individual few-layer graphene incorporated in an aluminum matrix

被引:79
作者
Zhou, Weiwei [1 ]
Fan, Yuchi [2 ]
Feng, Xiaopeng [1 ]
Kikuchi, Keiko [1 ]
Nomura, Naoyuki [1 ]
Kawasaki, Akira [1 ]
机构
[1] Tohoku Univ, Dept Mat Proc, Grad Sch Engn, Sendai, Miyagi 9808579, Japan
[2] Donghua Univ, State Key Lab Modificat Chem Fibers & Polymer Mat, Coll Mat Sci & Engn, Shanghai 201620, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Metal matrix composites (MMCs); Grapheme; Aluminum; Interfaces; ENHANCED MECHANICAL-PROPERTIES; TENSILE PROPERTIES; CARBON NANOTUBES; LOAD-TRANSFER; COMPOSITES; MICROSTRUCTURE; NANOCOMPOSITES; CONDUCTIVITY; ALLOY; EXFOLIATION;
D O I
10.1016/j.compositesa.2018.06.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
3D-networks of few-layer graphene (FLG) platelets at grain boundaries, sandwiched between thin amorphous Al2O3 layers, were fabricated by spark plasma sintering (SPS) of graphene oxide (GO)/Al mixed powders. The GO was prepared by a modified Hummers' method, and was thermally reduced to FLG simultaneously during SPS densification. Subsequent plastic flow of the Al matrix during the hot extrusion process caused the destruction of this structure, rearranged the FLG platelets individually into the uniaxial direction, and made them incorporate in the Al matrix. Observations by high-resolution transmission electron microscopy proved the existence of a direct-contact interface between the FLG and the Al matrix without any interfacial compounds, and revealed that the Al matrix featured a fairly low dislocation density. Consequently, the mechanical strength of Al matrix was noticeably enhanced by FLG incorporation, agreeing with the potential strengthening effect predicted by the load transfer mechanism.
引用
收藏
页码:168 / 177
页数:10
相关论文
共 57 条
[1]   Mechanical properties of aluminium based metal matrix composites reinforced with graphite nanoplatelets [J].
Alam, Syed Nasimul ;
Kumar, Lailesh .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 667 :16-32
[2]  
[Anonymous], 2011, THERMAL REDUCTION GR
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Graphene-aluminum nanocomposites [J].
Bartolucci, Stephen F. ;
Paras, Joseph ;
Rafiee, Mohammad A. ;
Rafiee, Javad ;
Lee, Sabrina ;
Kapoor, Deepak ;
Koratkar, Nikhil .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (27) :7933-7937
[5]   Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles [J].
Boostani, A. Fadavi ;
Tahamtan, S. ;
Jiang, Z. Y. ;
Wei, D. ;
Yazdani, S. ;
Khosroshahi, R. Azari ;
Mousavian, R. Taherzadeh ;
Xu, J. ;
Zhang, X. ;
Gong, D. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2015, 68 :155-163
[6]   Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests [J].
Chen, Biao ;
Li, Shufeng ;
Imai, Hisashi ;
Jia, Lei ;
Umeda, Junko ;
Takahashi, Makoto ;
Kondoh, Katsuyoshi .
COMPOSITES SCIENCE AND TECHNOLOGY, 2015, 113 :1-8
[7]   Effects of graphene content on the microstructure and properties of copper matrix composites [J].
Chen, Fanyan ;
Ying, Jiamin ;
Wang, Yifei ;
Du, Shiyu ;
Liu, Zhaoping ;
Huang, Qing .
CARBON, 2016, 96 :836-842
[8]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[9]   Microstructure and properties of bulk copper matrix composites strengthened with various kinds of graphene nanoplatelets [J].
Dutkiewicz, Jan ;
Ozga, Piotr ;
Maziarz, Wojciech ;
Pstrus, Janusz ;
Kania, Bogusz ;
Bobrowski, Piotr ;
Stolarska, Justyna .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 628 :124-134
[10]   The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al2O3 nanocomposites [J].
Fan, Yuchi ;
Estili, Mehdi ;
Igarashi, Ginga ;
Jiang, Wan ;
Kawasaki, Akira .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2014, 34 (02) :443-451