On the stability of hyperbolic attractors of systems of differential equations

被引:3
作者
Begun, N. A. [1 ]
Pliss, V. A. [1 ]
Sell, J. R. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg 199034, Russia
基金
俄罗斯基础研究基金会;
关键词
INVARIANT MANIFOLDS;
D O I
10.1134/S0012266116020014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study small C (1)-perturbations of systems of differential equations that have a weakly hyperbolic invariant set. We show that the weakly hyperbolic invariant set is stable even if the Lipschitz condition fails.
引用
收藏
页码:139 / 148
页数:10
相关论文
共 22 条
[11]   STABLE CENTER-STABLE CENTER CENTER-UNSTABLE UNSTABLE MANIFOLDS [J].
KELLEY, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1967, 3 (04) :546-&
[12]  
Kostrikin A.I., 1986, LINIEINAYA ALGEBRA G
[13]  
Monakov V. N., 1973, Vestn. Leningr. Univ., P68
[14]  
Pliss V. A., 1964, Izv. Akad. Nauk SSSR Ser. Mat., V28, P1297
[15]  
Pliss V.A., 1997, J DIFFER EQUATIONS, V149, P1
[16]   PERTURBATIONS OF ATTRACTORS OF DIFFERENTIAL-EQUATIONS [J].
PLISS, VA ;
SELL, GR .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 92 (01) :100-124
[17]  
PLISS VA, 1977, INTEGRALNYE MNOZHEST
[18]  
PLISS VA, 1993, DIFF EQUAT, V152, P247
[19]  
SACKER RJ, 1969, J MATH MECH, V18, P705
[20]   STRUCTURE OF A FLOW IN VICINITY OF AN ALMOST PERIODIC MOTION [J].
SELL, GR .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 27 (03) :359-393