On the stability of hyperbolic attractors of systems of differential equations

被引:3
作者
Begun, N. A. [1 ]
Pliss, V. A. [1 ]
Sell, J. R. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg 199034, Russia
基金
俄罗斯基础研究基金会;
关键词
INVARIANT MANIFOLDS;
D O I
10.1134/S0012266116020014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study small C (1)-perturbations of systems of differential equations that have a weakly hyperbolic invariant set. We show that the weakly hyperbolic invariant set is stable even if the Lipschitz condition fails.
引用
收藏
页码:139 / 148
页数:10
相关论文
共 22 条
  • [1] [Anonymous], 2012, Infinite-dimensional dynamical systems in mechanics and physics, DOI 10.1007/978-1-4684-0313-8
  • [2] [Anonymous], 1977, LECT NOTES MATH
  • [3] Begun N.A., 2015, VESTNIK ST PETERBU 1, P23
  • [4] Begun N.A., 2014, VESTNIK ST PETERBU 1, P12
  • [5] Begun N.A., 2013, DIFFER URAVN PROTSES, P80
  • [6] Begun N.A., 2012, VESTNIK ST PETERBU 1, V4
  • [7] Coddington E.A., 1955, THEORY ORDINARY DIFF
  • [8] Coppel W. A., 1978, Dichotomies in stability theory, V629
  • [9] FENICHEL N, 1971, INDIANA U MATH J, V21, P193
  • [10] STABILITY OF CENTER-STABLE MANIFOLD
    KELLEY, A
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 18 (02) : 336 - &