Engineering portfolios of Machine Learning algorithms to solve complex tasks in Robotics and Automated Reasoning

被引:1
作者
Pulina, Luca [1 ]
机构
[1] Univ Genoa, Dipartimento Informat Sistemist & Telemat, Genoa, Italy
关键词
Algorithm portfolios; Automated Reasoning; Machine Learning; quantified Boolean formulas;
D O I
10.3233/AIC-2010-0471
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This report provides a summary of a dissertation focusing in the application of Machine Learning (ML) techniques to solve complex tasks both in Robotics and Automated Reasoning. In particular, we focus on the contributions achieved in engineering ML techniques to yield a robust solver for quantified Boolean formulas.
引用
收藏
页码:61 / 63
页数:3
相关论文
共 11 条
[1]  
[Anonymous], 2005, Data mining: Practical machine learning tools and techniques
[2]  
Kontchakov R, 2009, 21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, P836
[3]  
PULINA L, 2009, THESIS U GENOA ITALY
[4]  
PULINA L, 2009, J ALGORITHM IN PRESS
[5]  
Pulina L, 2007, LECT NOTES COMPUT SC, V4741, P574
[6]  
Pulina L, 2009, 21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, P596
[7]  
Pulina L, 2009, LECT NOTES ARTIF INT, V5749, P350, DOI 10.1007/978-3-642-04222-5_22
[8]   A self-adaptive multi-engine solver for quantified Boolean formulas [J].
Pulina, Luca ;
Tacchella, Armando .
CONSTRAINTS, 2009, 14 (01) :80-116
[9]   Treewidth: A Useful Marker of Empirical Hardness in Quantified Boolean Logic Encodings [J].
Pulina, Luca ;
Tacchella, Armando .
LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, PROCEEDINGS, 2008, 5330 :528-542
[10]   Cross-Disciplinary Perspectives on Meta-Learning for Algorithm Selection [J].
Smith-Miles, Kate A. .
ACM COMPUTING SURVEYS, 2008, 41 (01)