Positive solutions for a class of p-Laplace problems involving quasi-linear and semi-linear terms

被引:4
作者
Yuan, Hongjun [1 ]
Chen, Mingtao [1 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
关键词
p-Laplace equation; positive solutions;
D O I
10.1016/j.jmaa.2006.08.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to discuss the positive solutions of the p-Laplace problem -div(vertical bar del u vertical bar(p-2)del) + g(u)vertical bar del u vertical bar(p) = lambda u(q), where p > 1, q > 1, g: [0, infinity) ->. [0, infinity) is a nonnegative continuous function, lambda is a real number. The sufficient condition to have positive solutions of the above problem is g is an element of L-1 (R+). However, if g is not an element of L-1 (R+), there is no solution which belongs to it. Therefore, our results are optimal. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1179 / 1193
页数:15
相关论文
共 14 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   Some results on positive solutions of equations including the p-Laplacian operator [J].
Azizieh, U .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (03) :191-207
[3]  
BENSOUSSAN A, 1988, ANN I H POINCARE-AN, V5, P347
[4]   Existence and nonexistence of solutions for some nonlinear elliptic equations [J].
Boccardo, L ;
Gallouet, T ;
Orsina, L .
JOURNAL D ANALYSE MATHEMATIQUE, 1997, 73 (1) :203-223
[5]  
BOCCARDO L, 1992, PITMAN RES NOTES MAT, V2962, P127
[6]  
Boccardo L., 1982, Port. Math., V41, P507
[7]  
BREZIS H, 1997, TOPOL METHOD NONL AN, V9, P201, DOI 10.12775/TMNA.1997.009
[8]   Existence of positive solutions for some problems with nonlinear diffusion [J].
Canada, A ;
Drabek, P ;
Gamez, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (10) :4231-4249
[9]  
Guo D. J., 2002, NONLINEAR FUNCTIONAL
[10]  
LINDNER E, 1990, MIKROCHIM ACTA, V1, P157