Morphological Filter Aided GMM Technique for Lung Nodule Detection

被引:0
作者
Haider, Amitava [1 ]
Chatterjee, Saptarshi [2 ]
Dey, Debangshu [2 ]
机构
[1] Supreme Knowledge Fdn Grp Inst, Comp Sci & Engn Dept, Hooghly, India
[2] Jadavpur Univ, Elect Engn Dept, Kolkata, India
来源
PROCEEDINGS OF 2020 IEEE APPLIED SIGNAL PROCESSING CONFERENCE (ASPCON 2020) | 2020年
关键词
candidate detection; lung cancer; lung nodule; morphology; nodule segmentation; support vector machine; PULMONARY NODULES; CT IMAGES; SEGMENTATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Lung cancer is one of the deadliest human disorders in all over the world. Early stage detection and identification of lung nodules from widely used High Resolution Computed Tomography (HRCT) images, helps in prevention of the disease. This paper is aimed to develop an automated computer-aided lung nodule detection system from HRCT images to provide a reliable second opinion to the radiologist and expert for further treatment. In this work a morphological filter aided Gaussian Mixture Model (GMM) is introduced for nodule segmentation and candidate detection. Support Vector Machine (SVM) with 10-fold cross validation technique is employed for nodule detection using LIDC/IDRI dataset. Finally, the reported work has detected the lung nodules with an overall sensitivity, specificity and accuracy of 89.77%, 86.92% and 88.24% respectively.
引用
收藏
页码:198 / 202
页数:5
相关论文
共 17 条
  • [1] A COMPREHENSIVE FRAMEWORK FOR AUTOMATIC DETECTION OF PULMONARY NODULES IN LUNG CT IMAGES
    Alilou, Mehdi
    Kovalev, Vassili
    Snezhko, Eduard
    Taimouri, Vahid
    [J]. IMAGE ANALYSIS & STEREOLOGY, 2014, 33 (01) : 13 - 27
  • [2] [Anonymous], 2010, INT J ENG SCI
  • [3] The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
    Armato, Samuel G., III
    McLennan, Geoffrey
    Bidaut, Luc
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    Zhao, Binsheng
    Aberle, Denise R.
    Henschke, Claudia I.
    Hoffman, Eric A.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Biancardi, Alberto M.
    Bland, Peyton H.
    Brown, Matthew S.
    Engelmann, Roger M.
    Laderach, Gary E.
    Max, Daniel
    Pais, Richard C.
    Qing, David P-Y
    Roberts, Rachael Y.
    Smith, Amanda R.
    Starkey, Adam
    Batra, Poonam
    Caligiuri, Philip
    Farooqi, Ali
    Gladish, Gregory W.
    Jude, C. Matilda
    Munden, Reginald F.
    Petkovska, Iva
    Quint, Leslie E.
    Schwartz, Lawrence H.
    Sundaram, Baskaran
    Dodd, Lori E.
    Fenimore, Charles
    Gur, David
    Petrick, Nicholas
    Freymann, John
    Kirby, Justin
    Hughes, Brian
    Casteele, Alessi Vande
    Gupte, Sangeeta
    Sallam, Maha
    Heath, Michael D.
    Kuhn, Michael H.
    Dharaiya, Ekta
    Burns, Richard
    Fryd, David S.
    [J]. MEDICAL PHYSICS, 2011, 38 (02) : 915 - 931
  • [4] Computerized detection of pulmonary nodules on CT scans
    Armato, SG
    Giger, ML
    Moran, CJ
    Blackburn, JT
    Doi, K
    MacMahon, H
    [J]. RADIOGRAPHICS, 1999, 19 (05) : 1303 - 1311
  • [5] Automatic segmentation of lung nodules with growing neural gas and support vector machine
    Barros Netto, Stelmo Magalhaes
    Silva, Aristofanes Correa
    Nunes, Rodolfo Acatauassu
    Gattass, Marcelo
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2012, 42 (11) : 1110 - 1121
  • [6] Segmentation of pulmonary nodules in thoracic CT scans: A region growing approach
    Dehmeshi, Jamshid
    Amin, Hamdan
    Valdivieso, Manlio
    Ye, Xujiong
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (04) : 467 - 480
  • [7] Computer-aided, detection of lung nodules: False positive reduction using a 3D gradient field method and 3D ellipsoid fitting
    Ge, ZY
    Sahiner, B
    Chan, HP
    Hadjiiski, LM
    Cascade, PN
    Bogot, N
    Kazerooni, EA
    Wei, J
    Zhou, CA
    [J]. MEDICAL PHYSICS, 2005, 32 (08) : 2443 - 2454
  • [8] Halder A, 2020, 2020 IEEE CALCUTTA CONFERENCE (CALCON), P511, DOI [10.1109/CALCON49167.2020.9106569, 10.1109/calcon49167.2020.9106569]
  • [9] Lung Nodule Detection from Feature Engineering to Deep Learning in Thoracic CT Images: a Comprehensive Review
    Halder, Amitava
    Dey, Debangshu
    Sadhu, Anup K.
    [J]. JOURNAL OF DIGITAL IMAGING, 2020, 33 (03) : 655 - 677
  • [10] Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique
    Lee, Y
    Hara, T
    Fujita, H
    Itoh, S
    Ishigaki, T
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (07) : 595 - 604