Adversarial Regularized Reconstruction for Anomaly Detection and Generation

被引:5
作者
Liguori, Angelica [1 ,2 ]
Manco, Giuseppe [2 ]
Pisani, Francesco Sergio [2 ]
Ritacco, Ettore [2 ]
机构
[1] Univ Calabria, Dept Comp Engn Modeling Elect & Syst, Calabria, Italy
[2] Natl Res Council ICAR CNR, Inst High Performance Comp & Networking, Via P Bucci, I-87036 Arcavacata Di Rende, Italy
来源
2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021) | 2021年
关键词
Anomaly Detection; Outlier Detection; Anomaly Generation; Outlier Generation; Generative Adversarial Networks; Variational Autoencoders;
D O I
10.1109/ICDM51629.2021.00145
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose ARN, a semisupervised anomaly detection and generation method based on adversarial reconstruction. ARN exploits a regularized autoencoder to optimize the reconstruction of variants of normal examples with minimal differences, that are recognized as outliers. The combination of regularization and adversarial reconstruction helps to stabilize the learning process, which results in both realistic outlier generation and substantial detection capability. Experiments on several benchmark datasets show that our model improves the current state-of-the-art by valuable margins because of its ability to model the true boundaries of the data manifold.
引用
收藏
页码:1204 / 1209
页数:6
相关论文
共 36 条
[1]  
Aggarwal C., 2016, Outlier Analysis, V2nd
[2]  
Akc<comma>ay S., 2019, IJCNN
[3]   GANomaly: Semi-supervised Anomaly Detection via Adversarial Training [J].
Akcay, Samet ;
Atapour-Abarghouei, Amir ;
Breckon, Toby P. .
COMPUTER VISION - ACCV 2018, PT III, 2019, 11363 :622-637
[4]   Using an autoencoder in the design of an anomaly detector for smart manufacturing [J].
Alfeo, Antonio L. ;
Cimino, Mario G. C. A. ;
Manco, Giuseppe ;
Ritacco, Ettore ;
Vaglini, Gigliola .
PATTERN RECOGNITION LETTERS, 2020, 136 :272-278
[5]  
An J., 2015, Technical report, 3
[6]  
[Anonymous], 2002, DAWAK
[7]  
Bank D., 2020, ARXIV200305991 CORR
[8]  
Chen Z., 2018, WTS
[9]   Calibrating Probability with Undersampling for Unbalanced Classification [J].
Dal Pozzolo, Andrea ;
Caelen, Olivier ;
Johnson, Reid A. ;
Bontempi, Gianluca .
2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, :159-166
[10]  
Goodfellow IJ, 2014, ADV NEURAL INFORM PR, V27, P2672, DOI DOI 10.1145/3422622