Global Exponential Stability for Matrix-Valued Neural Networks with Time Delay

被引:1
作者
Popa, Calin-Adrian [1 ]
机构
[1] Polytech Univ Timisoara, Dept Comp & Software Engn, Blvd V Parvan 2, Timisoara 300223, Romania
来源
ADVANCES IN NEURAL NETWORKS, PT I | 2017年 / 10261卷
关键词
Matrix-valued neural networks; Global stability; Linear matrix inequality; Time delay; MULTILAYER PERCEPTRONS; VARYING DELAYS; NEURONS;
D O I
10.1007/978-3-319-59072-1_51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Complex-, quaternion-, and Clifford-valued neural networks can all be generalized to matrix-valued neural networks, which have matrix states. This paper derives a sufficient criterion given in the form of linear matrix inequalities that guarantees the global exponential stability of the equilibrium point for matrix-valued Hopfield neural networks with time delay. A simulation example demonstrates the effectiveness of the theoretical results.
引用
收藏
页码:429 / 438
页数:10
相关论文
共 23 条