Electroplating lithium transition metal oxides

被引:72
作者
Zhang, Huigang [1 ]
Ning, Hailong [2 ]
Busbee, John
Shen, Zihan [1 ]
Kiggins, Chadd [2 ]
Hua, Yuyan [2 ]
Eaves, Janna [2 ]
Davis, Jerome, III [2 ]
Shi, Tan [2 ]
Shao, Yu-Tsun [3 ]
Zuo, Jian-Min [3 ,4 ]
Hong, Xuhao [1 ]
Chan, Yanbin [1 ]
Wang, Shuangbao [1 ]
Wang, Peng [1 ]
Sun, Pengcheng [3 ]
Xu, Sheng [5 ]
Liu, Jinyun [3 ]
Braun, Paul V. [2 ,3 ,4 ,6 ,7 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Collaborat Innovat Ctr Adv Microstruct, Inst Mat Engn,Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Xerion Adv Battery Corp, 60 Hazelwood Dr, Champaign, IL 61820 USA
[3] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
[5] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
[6] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[7] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
基金
中国国家自然科学基金;
关键词
FLEXIBLE ENERGY-STORAGE; LICOO2; THIN-FILMS; LI-ION BATTERY; COBALT OXIDE; CATHODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; OXYGEN EVOLUTION; ULTRAFAST-CHARGE; AQUEOUS-SOLUTION; ELECTRODE;
D O I
10.1126/sciadv.1602427
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Materials synthesis often provides opportunities for innovation. We demonstrate a general low-temperature (260 degrees C) molten salt electrodeposition approach to directly electroplate the important lithium-ion (Li-ion) battery cathode materials LiCoO2, LiMn2O4, and Al-doped LiCoO2. The crystallinities and electrochemical capacities of the electroplated oxides are comparable to those of the powders synthesized at much higher temperatures (700 degrees to 1000 degrees C). This new growth method significantly broadens the scope of battery form factors and functionalities, enabling a variety of highly desirable battery properties, including high energy, high power, and unprecedented electrode flexibility.
引用
收藏
页数:8
相关论文
共 82 条
[1]   Photochemical versus Thermal Synthesis of Cobalt Oxyhydroxide Nanocrystals [J].
Alvarado, Samuel R. ;
Guo, Yijun ;
Ruberu, T. Purnima A. ;
Bakac, Andreja ;
Vela, Javier .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (18) :10382-10389
[2]  
[Anonymous], 2009, THESIS
[3]   Three-dimensional electrodes and battery architectures [J].
Arthur, Timothy S. ;
Bates, Daniel J. ;
Cirigliano, Nicolas ;
Johnson, Derek C. ;
Malati, Peter ;
Mosby, James M. ;
Perre, Emilie ;
Rawls, Matthew T. ;
Prieto, Amy L. ;
Dunn, Bruce .
MRS BULLETIN, 2011, 36 (07) :523-531
[4]   Raman Microspectrometry Applied to the Study of Electrode Materials for Lithium Batteries [J].
Baddour-Hadjean, Rita ;
Pereira-Ramos, Jean-Pierre .
CHEMICAL REVIEWS, 2010, 110 (03) :1278-1319
[5]   Diagrams Er-mKOH for cobalt at 25-125 °C and at total pressure of 1-30 bar [J].
Balej, J ;
Divisek, J .
COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, 1997, 62 (11) :1663-1676
[6]  
Barin I., 1997, THERMOCHEMICAL DATA
[7]   On the metastable O2-type LiCoO2 [J].
Carlier, D ;
Saadoune, I ;
Croguennec, L ;
Ménétrier, M ;
Suard, E ;
Delmas, C .
SOLID STATE IONICS, 2001, 144 (3-4) :263-276
[8]   Identification of cathode materials for lithium batteries guided by first-principles calculations [J].
Ceder, G ;
Chiang, YM ;
Sadoway, DR ;
Aydinol, MK ;
Jang, YI ;
Huang, B .
NATURE, 1998, 392 (6677) :694-696
[9]   New insight in the behaviour of Co-H2Osystem at 25-150 °C, based on revised Pourbaix diagrams [J].
Chivot, J. ;
Mendoza, L. ;
Mansour, C. ;
Pauporte, T. ;
Cassir, M. .
CORROSION SCIENCE, 2008, 50 (01) :62-69
[10]   THERMODYNAMIC RATIONALIZATION OF MOLTEN-SALT ELECTRODEPOSITION IN OXIDE-BASED SYSTEMS [J].
CROUCHBAKER, S ;
HUGGINS, RA .
JOURNAL OF MATERIALS RESEARCH, 1989, 4 (06) :1495-1504