Stability theorems for Fourier frames and wavelet Riesz bases

被引:66
|
作者
Balan, R
机构
[1] Princeton University,Program in Applied and Computational Mathematics
关键词
frames; Riesz basis; nonharmonic series; wavelets;
D O I
10.1007/BF02648880
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present two applications of a Stability Theorem of Hilbert frames to nonharmonic Fourier series and wavelet Riesz basis. The first result is an enhancement of the Paley-Wiener type constant for nonharmonic series given by Duffin and Schaefer in [6] and used recently in some applications (see (3]). In the case of an orthonormal basis, our estimate reduces to Kadec' optimal 1/4 result. The second application proves that a phenomenon discovered by Daubechies and Tchamitchian [4] for the orthonormal Meyer wavelet basis (stability of the Riesz basis property under small changes of the translation parameter) actually holds for a large class of wavelet Riesz bases.
引用
收藏
页码:499 / 504
页数:6
相关论文
共 50 条
  • [21] Discrete directional wavelet bases and frames: analysis and applications
    Dragotti, PL
    Velisavljevic, V
    Vetterli, M
    Beferull-Lozano, B
    WAVELETS: APPLICATIONS IN SIGNAL AND IMAGE PROCESSING X, PTS 1 AND 2, 2003, 5207 : 583 - 591
  • [22] On the stability of multi-wavelet frames
    Wang, Gang
    Cheng, ZhengXing
    WAVELET ANALYSIS AND APPLICATIONS, 2007, : 83 - +
  • [23] Sign intermixing for Riesz bases and frames measured in the Kantorovich-Rubinstein norm
    Nikolski, Nikolai
    Volberg, Alexander
    JOURNAL OF APPROXIMATION THEORY, 2022, 281
  • [24] HIGH-PERFORMANCE VERY LOCAL RIESZ WAVELET BASES OF L2(Rn)
    Hur, Youngmi
    Ron, Amos
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (04) : 2237 - 2265
  • [25] A characterization of Riesz bases and pair of dual frames in tensor product of Hilbert spaces
    Ahmadi, Ahmad
    RICERCHE DI MATEMATICA, 2024, 73 (03) : 1167 - 1178
  • [26] A CHARACTERIZATION OF L-DUAL FRAMES AND L-DUAL RIESZ BASES
    Ahmadi, A.
    Hemmat, A. Askari
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2011, 37 (03) : 21 - 32
  • [27] FRAMES AND RIESZ BASES FOR BANACH SPACES, AND BANACH SPACES OF VECTOR-VALUED SEQUENCES
    Cho, Kyugeun
    Kim, Ju Myung
    Lee, Han Ju
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2013, 7 (02): : 172 - 193
  • [28] Affine Riesz bases and the dual function
    Terekhin, P. A.
    SBORNIK MATHEMATICS, 2016, 207 (09) : 1287 - 1318
  • [29] Stability of bases and frames of reproducing kernels in model spaces
    Baranov, A
    ANNALES DE L INSTITUT FOURIER, 2005, 55 (07) : 2399 - +
  • [30] Frames and Riesz bases of twisted shift-invariant spaces in L2(R2n)
    Radha, R.
    Adhikari, Saswata
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) : 1442 - 1461