An extension of Mok's theorem on the generalized Frankel conjecture

被引:30
作者
Gu HuiLing [1 ]
Zhang ZhuHong [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Kahler Ricci flow; orthogonal holomorphic bisectional curvature; first Chern class; COMPACT KAHLER-MANIFOLDS; NONNEGATIVE BISECTIONAL CURVATURE; CLASSIFICATION;
D O I
10.1007/s11425-010-0013-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will give an extension of Mok's theorem on the generalized Frankel conjecture under the condition of the orthogonal holomorphic bisectional curvature.
引用
收藏
页码:1253 / 1264
页数:12
相关论文
共 13 条
[1]  
BANDO S, 1984, J DIFFER GEOM, V19, P283
[2]   Classification of manifolds with weakly 1/4-pinched curvatures [J].
Brendle, Simon ;
Schoen, Richard M. .
ACTA MATHEMATICA, 2008, 200 (01) :1-13
[3]  
Cao H., UNPUB
[4]  
CHEN XX, 2006, ARXIVMATHDG0606229
[5]  
Gu HL, 2009, P AM MATH SOC, V137, P1063
[6]  
HAMILTON RS, 1986, J DIFFER GEOM, V24, P153
[7]   Ricci solitons on compact Kahler surfaces [J].
Ivey, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (04) :1203-1208
[8]   METRICS WITH NONNEGATIVE ISOTROPIC CURVATURE [J].
MICALLEF, MJ ;
WANG, MY .
DUKE MATHEMATICAL JOURNAL, 1993, 72 (03) :649-672
[9]  
MOK N, 1988, J DIFFER GEOM, V27, P179
[10]   PROJECTIVE-MANIFOLDS WITH AMPLE TANGENT-BUNDLES [J].
MORI, S .
ANNALS OF MATHEMATICS, 1979, 110 (03) :593-606