Torsion contact forms in three dimensions have two or infinitely many Reeb orbits

被引:20
作者
Cristofaro-Gardiner, Dan [1 ]
Hutchings, Michael [2 ]
Pomerleano, Daniel [3 ]
机构
[1] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Univ Massachusetts, Dept Math, Boston, MA 02125 USA
基金
英国工程与自然科学研究理事会;
关键词
GLUING PSEUDOHOLOMORPHIC CURVES; WEINSTEIN CONJECTURE; HOMOLOGY; PROOF;
D O I
10.2140/gt.2019.23.3601
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every nondegenerate contact form on a closed connected three-manifold such that the associated contact structure has torsion first Chern class has either two or infinitely many simple Reeb orbits. By previous results it follows that under the above assumptions, there are infinitely many simple Reeb orbits if the three-manifold is not the three-sphere or a lens space. We also show that for nontorsion contact structures, every nondegenerate contact form has at least four simple Reeb orbits.
引用
收藏
页码:3601 / 3645
页数:45
相关论文
共 29 条
  • [1] [Anonymous], 2007, NEW MATH MONOGRAPHS
  • [2] Asaoka M, 2016, GEOM FUNCT ANAL, V26, P1245, DOI 10.1007/s00039-016-0386-3
  • [3] BERLANGA R, 1983, J LOND MATH SOC, V27, P63
  • [4] Reeb vector fields and open book decompositions
    Colin, Vincent
    Honda, Ko
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (02) : 443 - 507
  • [5] Cristofaro-Gardiner D, 2016, J DIFFER GEOM, V102, P25
  • [6] The asymptotics of ECH capacities
    Cristofaro-Gardiner, Daniel
    Hutchings, Michael
    Ramos, Vinicius Gripp Barros
    [J]. INVENTIONES MATHEMATICAE, 2015, 199 (01) : 187 - 214
  • [7] Franks J., 1996, New York J. Math., V2, P1
  • [8] The dynamics on three-dimensional strictly convex energy surfaces
    Hofer, H
    Wysocki, K
    Zehnder, E
    [J]. ANNALS OF MATHEMATICS, 1998, 148 (01) : 197 - 289
  • [9] Finite energy foliations of tight three-spheres and Hamiltonian dynamics
    Hofer, H
    Wysocki, K
    Zehnder, E
    [J]. ANNALS OF MATHEMATICS, 2003, 157 (01) : 125 - 255
  • [10] PROPERTIES OF PSEUDO-HOLOMORPHIC CURVES IN SYMPLECTISATIONS .2. EMBEDDING CONTROLS AND ALGEBRAIC INVARIANTS
    HOFER, H
    WYSOCKI, K
    ZEHNDER, E
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (02) : 270 - 328