An SIRS model with a nonlinear incidence rate

被引:114
作者
Jin, Yu
Wang, Wendi [1 ]
Xiao, Shiwu
机构
[1] SW China Normal Univ, Dept Math, Chongqing 400715, Peoples R China
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
[3] Xiangfan Univ, Dept Math, Xiangfan 441053, Peoples R China
关键词
D O I
10.1016/j.chaos.2006.04.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The global dynamics of an SIRS model with a nonlinear incidence rate is investigated. We establish a threshold for a disease to be extinct or endemic, analyze the existence and asymptotic stability of equilibria, and verify the existence of bistable states, i.e., a stable disease free equilibrium and a stable endemic equilibrium or a stable limit cycle. In particular, we find that the model admits stability switches as a parameter changes. We also investigate the backward bifurcation, the Hopf bifurcation and Bogdanov-Takens bifurcation and obtain the Hopf bifurcation criteria and Bogdanov-Takens bifurcation curves, which are important for making strategies for controlling a disease. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1482 / 1497
页数:16
相关论文
共 28 条
[1]   Periodicity in an epidemic model with a generalized non-linear incidence [J].
Alexander, ME ;
Moghadas, SM .
MATHEMATICAL BIOSCIENCES, 2004, 189 (01) :75-96
[2]  
Bogdanov R.I., 1981, Selecta Mathematica Sovietica, V1, P373
[3]  
Bogdanov R.I., 1981, SELECTA MATH SOVIETI, V1, P389
[4]   Models for transmission of disease with immigration of infectives [J].
Brauer, F ;
van den Driessche, P .
MATHEMATICAL BIOSCIENCES, 2001, 171 (02) :143-154
[5]   GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V ;
SERIO, G .
MATHEMATICAL BIOSCIENCES, 1978, 42 (1-2) :43-61
[6]   Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population [J].
Derrick, WR ;
Van Den Driessche, P .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2003, 3 (02) :299-309
[7]   A DISEASE TRANSMISSION MODEL IN A NONCONSTANT POPULATION [J].
DERRICK, WR ;
VANDENDRIESSCHE, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1993, 31 (05) :495-512
[8]   Melnikov analysis of chaos in a simple epidemiological model [J].
Glendinning, P ;
Perry, LP .
JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 35 (03) :359-373
[9]  
GUCKENHEIMER J, 1997, NONLINEAR OSCILLATIO, P31
[10]   A qualitative study of a vaccination model with non-linear incidence [J].
Gumel, AB ;
Moghadas, SM .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 143 (2-3) :409-419