Drug discovery opportunities from apoptosis research

被引:89
作者
Reed, JC [1 ]
Tomaselli, KJ
机构
[1] Burnham Inst, La Jolla, CA 92037 USA
[2] IDUN Pharmaceut Inc, La Jolla, CA 92037 USA
关键词
D O I
10.1016/S0958-1669(00)00148-8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Cell suicide is a normal process that participates in a wide variety of physiological processes, including tissue homeostasis, immune regulation, and fertility. Physiological cell death typically:occurs by apoptosis, as opposed to necrosis. Defects in apoptotic cell-death regulation contribute to many diseases, including disorders associated with cell accumulation (e.g. cancer, autoimmunity, inflammation and restenosis) or where cell loss occurs (e.g. stroke, heart failure, neurodegeneration, AIDS and osteoporosis). At the center of the apoptosis machinery is a family of intracellular proteases, known as 'caspases', that are responsible directly or indirectly for the morphological and biochemical events that characterize apoptosis. Multiple positive and negative regulators of these cell-death proteases have been discovered in the genomes of mammals, amphibians, insects, nematodes, and other animal species, as well as a variety of animal viruses. Inputs from signal-transduction pathways into the core of the cell-death machinery have also been identified, demonstrating ways of linking environmental stimuli to cell-death responses or cell-survival maintenance. Knowledge of the molecular mechanisms of apoptosis has provided important insights into the causes of multiple diseases where aberrant cell-death regulation occurs and has revealed new approaches for identifying small-molecule drugs for more effectively treating these illnesses.
引用
收藏
页码:586 / 592
页数:7
相关论文
共 60 条
[1]   An emerging blueprint for apoptosis in Drosophila [J].
Abrams, JM .
TRENDS IN CELL BIOLOGY, 1999, 9 (11) :435-440
[2]   The Bcl-2 protein family: Arbiters of cell survival [J].
Adams, JM ;
Cory, S .
SCIENCE, 1998, 281 (5381) :1322-1326
[3]   Defects in regulation of apoptosis in caspase-2-deficient mice [J].
Bergeron, L ;
Perez, GI ;
Macdonald, G ;
Shi, LF ;
Sun, Y ;
Jurisicova, A ;
Varmuza, S ;
Latham, KE ;
Flaws, JA ;
Salter, JCM ;
Hara, H ;
Moskowitz, MA ;
Li, E ;
Greenberg, A ;
Tilly, JL ;
Yuan, JY .
GENES & DEVELOPMENT, 1998, 12 (09) :1304-1314
[4]   Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-κB [J].
Bertin, J ;
Nir, WJ ;
Fischer, CM ;
Tayber, OV ;
Errada, PR ;
Grant, JR ;
Keilty, JJ ;
Gosselin, ML ;
Robison, KE ;
Wong, GHW ;
Glucksmann, MA ;
DiStefano, PS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (19) :12955-12958
[5]   The three-dimensional structure of caspase-8:: an initiator enzyme in apoptosis [J].
Blanchard, H ;
Kodandapani, L ;
Mittl, PRE ;
Di Marco, S ;
Krebs, JF ;
Wu, JC ;
Tomaselli, KJ ;
Grütter, MG .
STRUCTURE, 1999, 7 (09) :1125-1133
[6]   Structural and biochemical basis of apoptotic activation by Smac/DIABLO [J].
Chai, JJ ;
Du, CY ;
Wu, JW ;
Kyin, S ;
Wang, XD ;
Shi, YG .
NATURE, 2000, 406 (6798) :855-862
[7]   Prediction of the tertiary structure of a caspase-9/inhibitor complex [J].
Chou, KC ;
Tomasselli, AG ;
Heinrikson, RL .
FEBS LETTERS, 2000, 470 (03) :249-256
[8]   Proteases to die for [J].
Cryns, V ;
Yuan, JY .
GENES & DEVELOPMENT, 1998, 12 (11) :1551-1570
[9]   IAP family proteins - suppressors of apoptosis [J].
Deveraux, QL ;
Reed, TC .
GENES & DEVELOPMENT, 1999, 13 (03) :239-252
[10]   Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition [J].
Du, CY ;
Fang, M ;
Li, YC ;
Li, L ;
Wang, XD .
CELL, 2000, 102 (01) :33-42