Polar representations of compact groups and convex hulls of their orbits

被引:8
作者
Gichev, V. M. [1 ]
机构
[1] Sobolev Inst Math, Omsk Branch, Omsk 644099, Russia
关键词
Polar representations; Semigroups of sets; Coxeter groups;
D O I
10.1016/j.difgeo.2010.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper contains a characterization of compact groups G subset of GL(0), where o is a finite-dimensional real vector space, which have the following property SP: the family of convex hulls of G-orbits is a semigroup with respect to the Minkowski addition. If G is finite, then SP holds if and only if G is a Coxeter group; if G is connected then SP is equivalent to the property to be polar. In general, G satisfies SP if and only if it is polar and its Weyl group is a Coxeter group. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:608 / 614
页数:7
相关论文
共 14 条
[1]   Geometric groups. I [J].
Berestovskii, V ;
Plaut, C ;
Stallman, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (04) :1403-1422
[2]  
Berestovskii VN, 1999, ST PETERSB MATH J, V11, p[1, 543]
[3]  
Bredon Glen E, 1972, INTRO COMPACT TRANSF
[4]   POLAR REPRESENTATIONS [J].
DADOK, J ;
KAC, V .
JOURNAL OF ALGEBRA, 1985, 92 (02) :504-524
[6]   On the classification of polar representations [J].
Eschenburg, JH ;
Heintze, E .
MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (03) :391-398
[7]  
Eschenburg JH, 1999, J REINE ANGEW MATH, V507, P93
[8]  
GICHEV VM, 2000, MAT STRUKT MODEL, V6, P29
[9]   Low cohomogeneity representations and orbit maximal actions [J].
Kollross, A .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 23 (01) :93-100
[10]  
Palais R. S., 1988, LECT NOTES MATH