Difference equation of the colored Jones polynomial for torus knot

被引:46
作者
Hikami, K [1 ]
机构
[1] Univ Tokyo, Dept Phys, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan
关键词
torus knot; Jones polynomial; A-polynomial; Alexander polynomial; q-hypergeometric function;
D O I
10.1142/S0129167X04002582
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the N-colored Jones polynomial for the torus knot T-s,T-t satisfies the second order difference equation, which reduces to the first order difference equation for a case of T-2,T-2m+1. We show that the A-polynomial of the torus knot can be derived from the difference equation. Also constructed is a q-hypergeometric type expression of the colored Jones polynomial for T-2,T-2m+1.
引用
收藏
页码:959 / 965
页数:7
相关论文
共 23 条
[1]  
Andrews G. E., 1976, THEORY PARTITIONS
[2]   On the Melvin-Morton-Rozansky conjecture [J].
BarNatan, D ;
Garoufalidis, S .
INVENTIONES MATHEMATICAE, 1996, 125 (01) :103-133
[3]   PLANE-CURVES ASSOCIATED TO CHARACTER VARIETIES OF 3-MANIFOLDS [J].
COOPER, D ;
CULLER, M ;
GILLET, H ;
LONG, DD ;
SHALEN, PB .
INVENTIONES MATHEMATICAE, 1994, 118 (01) :47-84
[4]   The A-polynomial from the noncommutative viewpoint [J].
Frohman, C ;
Gelca, R ;
Lofaro, W .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (02) :735-747
[5]  
GAROUFALIDIS S, 2003, MATHGT0306230
[6]  
GAROUFALIDIS S, 2003, MATHGT0309214
[7]   The noncommutative A-ideal of A (2,2p+1)-torus knot determines its Jones polynomial [J].
Gelca, R ;
Sain, J .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2003, 12 (02) :187-201
[8]  
Habiro Kazuo, 2002, INVARIANTS KNOTS 3 M, V4, P55, DOI DOI 10.2140/GTM.2002.4.55
[9]   Torus knot and minimal model [J].
Hikami, K ;
Kirillov, AN .
PHYSICS LETTERS B, 2003, 575 (3-4) :343-348
[10]  
HIKAMI K, UNPUB