Disorder engineering of undoped TiO2 nanotube arrays for highly efficient solar-driven oxygen evolution

被引:22
作者
Salari, M. [1 ]
Aboutalebi, S. H. [2 ]
Aghassi, A. [1 ]
Wagner, P. [1 ]
Mozer, A. J. [1 ]
Wallace, G. G. [1 ]
机构
[1] Univ Wollongong, Intelligent Polymer Res Inst, ARC Ctr Excellence Electromat Sci, Wollongong, NSW 2500, Australia
[2] Univ Wollongong, ARC Ctr Electromat Sci, Inst Superconducting & Elect Mat, Wollongong, NSW 2500, Australia
关键词
HYDROGEN; ANATASE; RUTILE; DESIGN;
D O I
10.1039/c4cp03177f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The trade-off between performance and complexity of the device manufacturing process should be balanced to enable the economic harvest of solar energy. Here, we demonstrate a conceptual, yet practical and well-regulated strategy to achieve efficient solar photocatalytic activity in TiO2 through controlled phase transformation and disorder engineering in the surface layers of TiO2 nanotubes. This approach enabled us to fine-tune the bandgap structure of undoped TiO2 according to our needs while simultaneously obtaining robust separation of photo-excited charge carriers. Introduction of specific surface defects also assisted in utilization of the visible part of sunlight to split water molecules for the production of oxygen. The strategy proposed here can serve as a guideline to overcome the practical limitation in the realization of efficient, non-toxic, chemically stable photoelectrochemical systems with high catalytic activity at neutral pH under visible illumination conditions. We also successfully incorporated TiO2 nanotube arrays (TNTAs) with free-based porphyrin affording a pathway with an overall 140% enhanced efficiency, an oxygen evolution rate of 436 mu L h(-1) and faradic efficiencies over 100%.
引用
收藏
页码:5642 / 5649
页数:8
相关论文
共 38 条
[1]   Photoluminescence of anatase and rutile TiO2 particles [J].
Abazovic, Nadica D. ;
Comor, Mirjana I. ;
Dramicanin, Miroslav D. ;
Jovanovic, Dragana J. ;
Ahrenkiel, S. Phillip ;
Nedeljkovic, Jovan M. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (50) :25366-25370
[2]   Enhancement in solar hydrogen generation efficiency using a GaN-based nanorod structure [J].
Benton, J. ;
Bai, J. ;
Wang, T. .
APPLIED PHYSICS LETTERS, 2013, 102 (17)
[3]   Formation Mechanism of TiO2 Nanotubes and Their Applications in Photoelectrochemical Water Splitting and Supercapacitors [J].
Chen, Bo ;
Hou, Junbo ;
Lu, Kathy .
LANGMUIR, 2013, 29 (19) :5911-5919
[4]   Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J].
Chen, Xiaobo ;
Liu, Lei ;
Yu, Peter Y. ;
Mao, Samuel S. .
SCIENCE, 2011, 331 (6018) :746-750
[5]   Photoelectrochemical water splitting [J].
Currao, Antonio .
CHIMIA, 2007, 61 (12) :815-819
[6]   ELECTRONIC BAND-STRUCTURE OF TITANIUM-DIOXIDE [J].
DAUDE, N ;
GOUT, C ;
JOUANIN, C .
PHYSICAL REVIEW B, 1977, 15 (06) :3229-3235
[7]  
Duan LL, 2012, NAT CHEM, V4, P418, DOI [10.1038/nchem.1301, 10.1038/NCHEM.1301]
[8]   Local bonding analysis of the valence and conduction band features of TiO2 [J].
Fleming, I. ;
Fulton, C. C. ;
Lucovsky, G. ;
Rowe, J. E. ;
Ulrich, M. D. ;
Luening, J. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (03)
[9]   Porphyrins for dye-sensitised solar cells: new insights into efficiency-determining electron transfer steps [J].
Griffith, Matthew J. ;
Sunahara, Kenji ;
Wagner, Pawel ;
Wagner, Klaudia ;
Wallace, Gordon G. ;
Officer, David L. ;
Furube, Akihiro ;
Katoh, Ryuzi ;
Mori, Shogo ;
Mozer, Attila J. .
CHEMICAL COMMUNICATIONS, 2012, 48 (35) :4145-4162
[10]  
Hardcastle F., 2011, J ARK ACAD SCI, V65, P43