Microthermal machining using scanning thermal microscopy

被引:20
作者
Fang, TH
Chang, WJ [1 ]
机构
[1] Kun Shan Univ Technol, Dept Mech Engn, Tainan, Taiwan
[2] So Taiwan Univ Technol, Dept Engn Mech, Tainan 710, Taiwan
关键词
SThM; microthermal machining; high-density data storage; polymer;
D O I
10.1016/j.apsusc.2004.06.148
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Microthermal machining using scanning thermal microscopy (SThM) has been per-formed on polymethylmethacrylate (PMMA) materials, which are a soft polymer and suitable for microthermal machining. The probe of the SThM is heated and used as a machining tool on the PMMA material. Adjustment of the resistance can control the probe's temperature. To obtain good machining quality, the probe temperature must be continuously controlled. The temperature of the machined area of the sample's surface must be higher than the melting point of the PMMA material. However, a lower machined quality occurs when the probe temperature is too high. Furthermore, the adhesive phenomenon is very apparent when the contact mode is used in SThM machining. The microthermal machining of PMMA materials using SThM in semi-contact mode at a probe temperature of 400 degreesC has the best results. The technique can be used to process a complicated pattern and applied for use of high-density data storage. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:312 / 317
页数:6
相关论文
共 12 条
[1]   Ultrahigh-density atomic force microscopy data storage with erase capability [J].
Binnig, G ;
Despont, M ;
Drechsler, U ;
Häberle, W ;
Lutwyche, M ;
Vettiger, P ;
Mamin, HJ ;
Chui, BW ;
Kenny, TW .
APPLIED PHYSICS LETTERS, 1999, 74 (09) :1329-1331
[2]   Machining characterization of the nano-lithography process using atomic force microscopy [J].
Fang, TH ;
Weng, CI ;
Chang, JG .
NANOTECHNOLOGY, 2000, 11 (03) :181-187
[3]   Molecular dynamics simulation of nano-lithography process using atomic force microscopy [J].
Fang, TH ;
Weng, CI ;
Chang, JG .
SURFACE SCIENCE, 2002, 501 (1-2) :138-147
[4]   Front- and backside investigations of thermal and electronic properties of semiconducting devices [J].
Fiege, GBM ;
Schade, W ;
Palaniappan, M ;
Ng, V ;
Phang, JCH ;
Balk, LJ .
MICROELECTRONICS RELIABILITY, 1999, 39 (6-7) :937-940
[5]   Failure analysis of integrated devices by Scanning Thermal Microscopy (SThM) [J].
Fiege, GBM ;
Feige, V ;
Phang, JCH ;
Maywald, M ;
Gorlich, S ;
Balk, LJ .
MICROELECTRONICS RELIABILITY, 1998, 38 (6-8) :957-961
[6]   Sub-micrometer thermal physics - An overview on SThM techniques [J].
Gmelin, E ;
Fischer, R ;
Stitzinger, R .
THERMOCHIMICA ACTA, 1998, 310 (1-2) :1-17
[7]  
Gorbunov V. V., 2000, PROBE MICROSC, V2, P53
[8]   Highly localized thermal, mechanical, and spectroscopic characterization of polymers using miniaturized thermal probes [J].
Hammiche, A ;
Bozec, L ;
Conroy, M ;
Pollock, HM ;
Mills, G ;
Weaver, JMR ;
Price, DM ;
Reading, M ;
Hourston, DJ ;
Song, M .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (03) :1322-1332
[9]   Microcantilevers integrated with heaters and piezoelectric detectors for nano data-storage application [J].
Lee, CS ;
Nam, HJ ;
Kim, YS ;
Jin, WH ;
Cho, SM ;
Bu, JU .
APPLIED PHYSICS LETTERS, 2003, 83 (23) :4839-4841
[10]   Micro-thermal analysis: techniques and applications [J].
Pollock, HM ;
Hammiche, A .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2001, 34 (09) :R23-R53