Second-Order Structured Deformations: Relaxation, Integral Representation and Applications

被引:15
作者
Barroso, Ana Cristina [1 ,2 ]
Matias, Jose [3 ]
Morandotti, Marco [4 ]
Owen, David R. [5 ]
机构
[1] Univ Lisbon, Fac Ciencias, Dept Matemat, Edificio C6 Piso 1, P-1749016 Lisbon, Portugal
[2] Univ Lisbon, Fac Ciencias, CMAF CIO, Edificio C6 Piso 1, P-1749016 Lisbon, Portugal
[3] Inst Super Tecn, Dept Matemat, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
[4] Tech Univ Munich, Fak Math, Boltzmannstr 3, D-85748 Garching, Germany
[5] Carnegie Mellon Univ, Dept Math Sci, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
基金
欧洲研究理事会;
关键词
STABLE DISARRANGEMENT PHASES; ENERGY; MODEL; TRANSFORMATIONS; INTERFACES; THEOREM; BULK;
D O I
10.1007/s00205-017-1120-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Second-order structured deformations of continua provide an extension of the multiscale geometry of first-order structured deformations by taking into account the effects of submacroscopic bending and curving. We derive here an integral representation for a relaxed energy functional in the setting of second-order structured deformations. Our derivation covers inhomogeneous initial energy densities (i.e., with explicit dependence on the position); finally, we provide explicit formulas for bulk relaxed energies as well as anticipated applications.
引用
收藏
页码:1025 / 1072
页数:48
相关论文
共 34 条
[1]   Continuum Mechanics of the Interaction of Phase Boundaries and Dislocations in Solids [J].
Acharya, Amit ;
Fressengeas, Claude .
DIFFERENTIAL GEOMETRY AND CONTINUUM MECHANICS, 2015, 137 :123-165
[3]   A LUSIN TYPE THEOREM FOR GRADIENTS [J].
ALBERTI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :110-118
[4]  
AMBROSIO L, 1991, J MATH PURE APPL, V70, P269
[5]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI [10.1017/S0024609301309281, 10.1093/oso/9780198502456.001.0001]
[6]  
[Anonymous], 1984, MINIMAL SURFACES FUN
[7]  
[Anonymous], 2014, Geometric Measure Theory. Classics in Mathematics
[8]  
[Anonymous], 1988, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.
[9]  
[Anonymous], 1989, GRADUATE TEXTS MATH
[10]  
BAIA M., 2011, SAO PAULO J MATH SCI, V5, P185