Multiplicity Results of a Nonlocal Problem Involving Concave-Convex Nonlinearities

被引:3
作者
Daoues, A. [1 ]
Hammami, A. [1 ]
Saoudi, K. [2 ]
机构
[1] Univ Sousse, Ecole Super Sci & Technol Hammam Sousse, Sousse 4011, Tunisia
[2] Imam Abdulrahman Bin Faisal Univ, Coll Sci Dammam, Dept Math, Dammam 31441, Saudi Arabia
关键词
Nonlocal operator; fractional p-Laplacian; variationals methods; multiple solutions; EXISTENCE;
D O I
10.1134/S0001434621010235
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we investigate the following fractional p-Laplacian equation involving a concave-convex nonlinearities as follows, (P lambda){(-Delta)(p)(s)u = lambda u(q) + u(r) in Omega, u > 0 in Omega, u - 0 in RN\Omega, where Omega subset of R-N, N =>= 2 is a bounded domain with C(1,)1 boundary partial derivative Omega, lambda > 0, 1 < p < infinity, s is an element of (0, 1) such that N >= sp, 0 < q < p - 1 < r <= p(s)* - 1, p* s = Np/N-sp is the fractional critical Sobolev exponent and the nonlinear nonlocal operator (-Delta)(p)(s)u with s is an element of (0, 1) is the p-fractional Laplacian defined
引用
收藏
页码:192 / 207
页数:16
相关论文
共 27 条
[1]   Multiplicity results for some nonlinear elliptic equations [J].
Ambrosetti, A ;
Azorero, JG ;
Peral, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 137 (01) :219-242
[2]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[3]  
Applebaum D., 2009, Lvy Processes and Stochastic Calculus, DOI DOI 10.1017/CBO9780511809781
[4]   ON THE EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR DIRICHLET'S PROBLEM FOR FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Averna, Diego ;
Tersian, Stepan ;
Tornatore, Elisabetta .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (01) :253-266
[5]   SOME RESULTS ABOUT THE EXISTENCE OF A 2ND POSITIVE SOLUTION IN A QUASI-LINEAR CRITICAL PROBLEM [J].
AZORERO, JG ;
ALONSO, IP .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (03) :941-957
[6]   A critical fractional equation with concave convex power nonlinearities [J].
Barrios, B. ;
Colorado, E. ;
Servadei, R. ;
Soria, F. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04) :875-900
[7]   Existence of solutions to boundary value problem for impulsive fractional differential equations [J].
Bonanno, Gabriele ;
Rodriguez-Lopez, Rosana ;
Tersian, Stepan .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (03) :717-744
[8]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[9]   The fractional Cheeger problem [J].
Brasco, L. ;
Lindgren, E. ;
Parini, E. .
INTERFACES AND FREE BOUNDARIES, 2014, 16 (03) :419-458
[10]   CONVEXITY PROPERTIES OF DIRICHLET INTEGRALS AND PICONE-TYPE INEQUALITIES [J].
Brasco, Lorenzo ;
Franzina, Giovanni .
KODAI MATHEMATICAL JOURNAL, 2014, 37 (03) :769-799