On quantized Lienard oscillator and momentum dependent mass

被引:10
作者
Bagchi, B. [1 ]
Choudhury, A. Ghose [2 ]
Guha, Partha [3 ,4 ]
机构
[1] Univ Calcutta, Dept Appl Math, Kolkata 700009, India
[2] Surendranath Coll, Dept Phys, Kolkata 700009, India
[3] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[4] SN Bose Natl Ctr Basic Sci, Kolkata 700098, India
关键词
QUANTUM-MECHANICS; LAST MULTIPLIER; EQUATIONS;
D O I
10.1063/1.4906134
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine the analytical structure of the nonlinear Lienard oscillator and show that it is a bi-Hamiltonian system depending upon the choice of the coupling parameters. While one has been recently studied in the context of a quantized momentum-dependent mass system, the other Hamiltonian also reflects a similar feature in the mass function and also depicts an isotonic character. We solve for such a Hamiltonian and give the complete solution in terms of a confluent hypergeometric function. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:7
相关论文
共 37 条
[1]   Position-dependent mass models and their nonlinear characterization [J].
Bagchi, B. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (49) :F1041-F1045
[2]   A general scheme for the effective-mass Schrodinger equation and the generation of the associated potentials [J].
Bagchi, B ;
Gorain, P ;
Quesne, C ;
Roychoudhury, R .
MODERN PHYSICS LETTERS A, 2004, 19 (37) :2765-2775
[3]  
Bagchi B., ARXIV07060607QUANTPH
[4]   Nonlinear dynamics of a position-dependent mass-driven Duffing-type oscillator [J].
Bagchi, Bijan ;
Das, Supratim ;
Ghosh, Samiran ;
Poria, Swarup .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (03)
[5]   Structure and energetics of mixed He-4-He-3 drops [J].
Barranco, M ;
Pi, M ;
Gatica, SM ;
Hernandez, ES ;
Navarro, J .
PHYSICAL REVIEW B, 1997, 56 (14) :8997-9003
[6]  
BHATTACHARJIE A, 1962, NUOVO CIMENTO, V25, P864, DOI 10.1007/BF02733153
[7]  
Bransden B. H., 2003, PHYS ATOMS MOL
[8]  
Carinena J. F., ARXIVMATHPH0505028
[9]   One-dimensional model of a quantum nonlinear harmonic oscillator [J].
Cariñena, JF ;
Rañada, MF ;
Santander, M .
REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (02) :285-293
[10]  
Carinena JF., 2005, P 10 INT C MOD GROUP, P39