Maximum discrimination index: a tool for land cover identification

被引:1
作者
Lencina, A. [1 ]
Weber, C. [2 ,3 ,4 ]
机构
[1] Univ Nacl Ctr Prov Buenos Aires, CONICET, Fac Agron, Lab Anal Suelos, Ave Republ Italia 780,POB 47, RA-7300 Buenos Aires, DF, Argentina
[2] Univ Nacl La Plata, Fac Ciencias Agr & Forestales, Casilla Correo 31, RA-1900 La Plata, Buenos Aires, Argentina
[3] UNLP, CIC, CONICET, Ctr Invest Opt, POB 3,Cno Centenario & 506, RA-1897 Buenos Aires, DF, Argentina
[4] Comis Invest Cient Prov Buenos Aires, RA-1900 Buenos Aires, DF, Argentina
关键词
Discrimination; Ryegrass; Spectral signature; Vegetation index; Wheat; VEGETATION; CLASSIFICATION; SENSITIVITY; ACCURACY;
D O I
10.1007/s13762-019-02547-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This work presents an adaptable index that is applied to a pair of covers to be discriminated. Its adaptability relies on the procedure to determine the numerical value of the wavelengths or bands involved: the maximization of an operator based on the geometric mean of squared differences. This index is applied to the particular case of discrimination of wheat from ryegrass in different phenological stages. The maximum discrimination index outperforms other indices such as the normalized difference vegetation index, advanced normalized vegetation index and normalized difference greenness index. Its efficacy of discrimination is characterized and compared with the normalized difference greenness index (the second with better performance). It is observed that the proposed index has a more predictable behavior and reaches a discrimination accuracy as high as 95.5%. The maximum discrimination index could be adjusted to different covers and employed as a tool for discrimination. Spectral signatures coming from any platform: field, aerial or satellite, can be handled.
引用
收藏
页码:1113 / 1122
页数:10
相关论文
共 50 条
  • [21] Land Use and Land Cover Changes: A Case Study in Nigeria
    Ologunde, Olanrewaju H.
    Kelani, Mordiyah O.
    Biru, Moges K.
    Olayemi, Abdullahi B.
    Nunes, Marcio R.
    LAND, 2025, 14 (02)
  • [22] Urban Land Use/Land Cover Discrimination Using Image-Based Reflectance Calibration Methods for Hyperspectral Data
    Deshpande, Shailesh S.
    Inamdar, Arun B.
    Vin, Harrick M.
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2017, 83 (05) : 365 - 376
  • [23] Global land cover trajectories and transitions
    Radwan, Taher M.
    Blackburn, G. Alan
    Whyatt, J. Duncan
    Atkinson, Peter M.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [24] Automated identification of land cover type using multispectral satellite images
    Stevic, Dragan
    Hut, Igor
    Dojcinovic, Nikola
    Jokovic, Jugoslav
    ENERGY AND BUILDINGS, 2016, 115 : 131 - 137
  • [25] Comparative Performance of Maximum Likelihood and Minimum Distance Classifiers on Land Use and Land Cover Analysis of Varanasi District (India)
    Kumari, Annu
    Karthikeyan, S.
    ADVANCED NETWORK TECHNOLOGIES AND INTELLIGENT COMPUTING, ANTIC 2022, PT II, 2023, 1798 : 476 - 484
  • [26] Landsat sub-pixel land cover dynamics in the Brazilian Amazon
    Souza Jr, Carlos M.
    Oliveira, Luis A.
    de Souza Filho, Jailson S.
    Ferreira, Bruno G.
    Fonseca, Antonio V.
    Siqueira, Joao V.
    FRONTIERS IN FORESTS AND GLOBAL CHANGE, 2023, 6
  • [27] Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product
    Sulla-Menashe, Damien
    Gray, Josh M.
    Abercrombie, S. Parker
    Friedl, Mark A.
    REMOTE SENSING OF ENVIRONMENT, 2019, 222 : 183 - 194
  • [28] Land use and cover changes on the Loess Plateau: A comparison of six global or national land use and cover datasets
    Sun, Wenyi
    Ding, Xiaotong
    Su, Jingbo
    Mu, Xingmin
    Zhang, Yongqiang
    Gao, Peng
    Zhao, Guangju
    LAND USE POLICY, 2022, 119
  • [29] Developing spatially and thematically detailed backdated maps for land cover studies
    Vidal-Macua, Juan Jose
    Zabala, Alaitz
    Ninyerola, Miquel
    Pons, Xavier
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2017, 10 (02) : 175 - 206
  • [30] Urban land use land cover mapping in tropical savannah using Landsat-8 derived normalized difference vegetation index (NDVI) threshold
    Idrees, Mohammed O.
    Omar, Dahir M.
    Babalola, Ayo
    Ahmadu, Hussein A.
    Yusuf, Abdulganiyu
    Lawal, Falilat O.
    SOUTH AFRICAN JOURNAL OF GEOMATICS, 2022, 11 (01): : 100 - 112