Pressure-Driven Membrane Process: A Review of Advanced Technique for Heavy Metals Remediation

被引:37
作者
Verma, Bharti [1 ]
Balomajumder, Chandrajit [2 ]
Sabapathy, Manigandan [1 ]
Gumfekar, Sarang P. [1 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Ropar 140001, India
[2] Indian Inst Technol, Dept Chem Engn, Roorkee 247667, Uttar Pradesh, India
关键词
water treatment; heavy metal removal; polymer membranes; nano-filtration; ultra-filtration; MICELLAR-ENHANCED ULTRAFILTRATION; HOLLOW-FIBER MEMBRANES; RESPONSE-SURFACE METHODOLOGY; AQUEOUS-SOLUTIONS; WASTE-WATER; REVERSE-OSMOSIS; NANOFILTRATION MEMBRANE; SIMULTANEOUS REMOVAL; SELECTIVE SEPARATION; HEXAVALENT CHROMIUM;
D O I
10.3390/pr9050752
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Pressure-driven processes have come a long way since they were introduced. These processes, namely Ultra-Filtration (UF), Nano-Filtration (NF), and Reverse-Osmosis (RO), aim to enhance the efficiency of wastewater treatment, thereby aiming at a cleaner production. Membranes may be polymeric, ceramic, metallic, or organo-mineral, and the filtration techniques differ in pore size from dense to porous membrane. The applied pressure varies according to the method used. These are being utilized in many exciting applications in, for example, the food industry, the pharmaceutical industry, and wastewater treatment. This paper attempts to comprehensively review the principle behind the different pressure-driven membrane technologies and their use in the removal of heavy metals from wastewater. The transport mechanism has been elaborated, which helps in the predictive modeling of the membrane system. Fouling of the membrane is perhaps the only barrier to the emergence of membrane technology and its full acceptance. However, with the use of innovative techniques of fabrication, this can be overcome. This review is concluded with perspective recommendations that can be incorporated by researchers worldwide as a new problem statement for their work.
引用
收藏
页数:15
相关论文
共 137 条
[1]   Using micellar enhanced ultrafiltration and reduction techniques for removal of Cr(VI) and Cr(III) from water [J].
Abbasi-Garravand, Elham ;
Mulligan, Catherine N. .
SEPARATION AND PURIFICATION TECHNOLOGY, 2014, 132 :505-512
[2]   Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid [J].
Abdi, Gisya ;
Alizadeh, Abdolhamid ;
Zinadini, Sirus ;
Moradi, Golshan .
JOURNAL OF MEMBRANE SCIENCE, 2018, 552 :326-335
[3]   Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption [J].
Abejon, A. ;
Garea, A. ;
Irabien, A. .
SEPARATION AND PURIFICATION TECHNOLOGY, 2015, 144 :46-53
[4]  
Abu Qdais H, 2004, DESALINATION, V164, P105
[5]   A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions [J].
Ahmed, Md. Juned K. ;
Ahmaruzzaman, M. .
JOURNAL OF WATER PROCESS ENGINEERING, 2016, 10 :39-47
[6]   Removal of arsenate [As(V)] and arsenite [As(III)] from water by SWHR and BW-30 reverse osmosis [J].
Akin, Ilker ;
Arslan, Gulsin ;
Tor, Ali ;
Cengeloglu, Yunus ;
Ersoz, Mustafa .
DESALINATION, 2011, 281 :88-92
[7]   Removal of heavy metal ions by nanofiltration [J].
Al-Rashdi, B. A. M. ;
Johnson, D. J. ;
Hilal, N. .
DESALINATION, 2013, 315 :2-17
[8]   Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration [J].
Aroua, Mohamed Kheireddine ;
Zuki, Fathiah Mohamed ;
Sulaiman, Nik Meriam .
JOURNAL OF HAZARDOUS MATERIALS, 2007, 147 (03) :752-758
[9]   Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO2 concentrations [J].
Aslam, Ambreen ;
Thomas-Hall, Skye R. ;
Mughal, Tahira ;
Zaman, Qamar-uz ;
Ehsan, Nusrat ;
Javied, Sabiha ;
Schenk, Peer M. .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2019, 241 :243-250
[10]   Simultaneous removal of arsenate and nitrate from aqueous solutions using micellar-enhanced ultrafiltration process [J].
Bahmani, Pegah ;
Maleki, Afshin ;
Rezaee, Reza ;
Khamforoush, Mehrdad ;
Yetilmezsoy, Kaan ;
Athar, Saeed Dehestani ;
Gharibi, Fardin .
JOURNAL OF WATER PROCESS ENGINEERING, 2019, 27 :24-31