JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells

被引:342
作者
Passegué, E
Wagner, EF
Weissman, IL
机构
[1] Stanford Univ, Sch Med, Inst Canc & Stem Cell Biol & Med, Dept Pathol, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Inst Canc & Stem Cell Biol & Med, Dept Dev Biol, Stanford, CA 94305 USA
[3] Res Inst Mol Pathol, A-1030 Vienna, Austria
关键词
D O I
10.1016/j.cell.2004.10.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The AP-1 transcription factor JunB is a transcriptional regulator of myelopoiesis. Inactivation of JunB in postnatal mice results in a myeloproliferative disorder (MPD) resembling early human chronic myelogenous leukemia (CML). Here, we show that JunB regulates the numbers of hematopoietic stem cells (HSC). JunB overexpression decreases the frequency of long-term HSC (LT-HSC), while JunB inactivation specifically expands the numbers of LT-HSC and granulocyte/macrophage progenitors (GMP) resulting in chronic MPD. Further, we demonstrate that junB inactivation must take place in LT-HSC, and not at later stages of myelopoiesis, to induce MPD and that only junB-deficient LT-HSC are capable of transplanting the MPD to recipient mice. These results demonstrate a stem cell-specific role for JunB in normal and leukemic hematopoiesis and provide experimental evidence that leukemic stem cells (LSC) can reside at the LT-HSC stage of development in a mouse model of MPD.
引用
收藏
页码:431 / 443
页数:13
相关论文
共 47 条
[1]   A clonogenic common myeloid progenitor that gives rise to all myeloid lineages [J].
Akashi, K ;
Traver, D ;
Miyamoto, T ;
Weissman, IL .
NATURE, 2000, 404 (6774) :193-197
[2]   Replicative senescence of hematopoietic stem cells during serial transplantation: does telomere shortening play a role? [J].
Allsopp, RC ;
Weissman, IL .
ONCOGENE, 2002, 21 (21) :3270-3273
[3]   HOXB4-induced expansion of adult hematopoietic stem cells ex vivo [J].
Antonchuk, J ;
Sauvageau, G ;
Humphries, RK .
CELL, 2002, 109 (01) :39-45
[4]   Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation [J].
Bhardwaj, G ;
Murdoch, B ;
Wu, D ;
Baker, DP ;
Williams, KP ;
Chadwick, K ;
Ling, LE ;
Karanu, FN ;
Bhatia, M .
NATURE IMMUNOLOGY, 2001, 2 (02) :172-180
[5]   The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: Biologic significance and implications for the assessment of minimal residual disease [J].
Bose, S ;
Deininger, M ;
Gora-Tybor, J ;
Goldman, JM ;
Melo, JV .
BLOOD, 1998, 92 (09) :3362-3367
[6]   Gene expression profiling in chronic myeloid leukemia patients treated with hydroxyurea [J].
Bruchova, H ;
Borovanova, T ;
Klamova, H ;
Brdicka, R .
LEUKEMIA & LYMPHOMA, 2002, 43 (06) :1289-1295
[7]   Flk-2 is a marker in hematopoietic stem cell differentiation: A simple method to isolate long-term stem cells [J].
Christensen, JL ;
Weissman, IL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) :14541-14546
[8]   Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies [J].
Clarkson, B ;
Strife, A ;
Wisniewski, D ;
Lambek, CL ;
Liu, C .
LEUKEMIA, 2003, 17 (07) :1211-1262
[9]   Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors [J].
Cozzio, A ;
Passegué, E ;
Ayton, PM ;
Karsunky, H ;
Cleary, ML ;
Weissman, IL .
GENES & DEVELOPMENT, 2003, 17 (24) :3029-3035
[10]   The role of apoptosis in regulating hematopoiesis and hematopoietic stem cells [J].
Domen, J .
IMMUNOLOGIC RESEARCH, 2000, 22 (2-3) :83-94