A new system theoretic classifier for detection and prediction of epileptic seizures

被引:0
作者
Sinha, AK [1 ]
Loparo, KA [1 ]
Richoux, WJ [1 ]
机构
[1] Case Western Reserve Univ, Dept Elect Engn & Comp Sci, Cleveland, OH 44106 USA
来源
PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7 | 2004年 / 26卷
关键词
fuzzy sets; fuzzy measures; system analysis; classification; electroencephalogram analysis; epilepsy; epileptic seizure detection; epileptic seizure prediction;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A system theoretic computational approach has been recently proposed as a generalization of probabilistic networks for modeling complex systems. The computational approach, Fuzzy Measure-theoretic Quantum Approximation of an Abstract System (FMQAS), generates a system measure between each pair of system objects as a relative measure of association incorporating, through a hierarchical iterative procedure, both the local and global significance of the interaction. FMQAS provides the basis for a new classification algorithm. A preliminary modification of this classification algorithm for temporal sequences is used to analyze electroencephalogram (EEG) data obtained in the temporal neighborhood of a seizure episode to obtain distinct state descriptions (patient invariant characterizations) of the seizure states. This state characterization enables seizure detection before onset with sufficient time to warn the individual or execute actions to abort the seizure formation.
引用
收藏
页码:415 / 418
页数:4
相关论文
共 50 条
[41]   Performance evaluation of DWT based sigmoid entropy in time and frequency domains for automated detection of epileptic seizures using SVM classifier [J].
Raghu, S. ;
Sriraam, Natarajan ;
Temel, Yasin ;
Rao, Shyam Vasudeva ;
Hegde, Alangar Satyaranjandas ;
Kubben, Pieter L. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 110 :127-143
[42]   Detection of Epileptic Seizures with Support Vector Machine Algorithm [J].
Sakaci, Furkan Hasan ;
Cetiner, Emine ;
Yener, Suayb Cagri .
2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
[43]   Detection of epileptic seizures with the use of convolutional neural networks [J].
Wiszniewski, Przemyslaw ;
Kolodziej, Marcin ;
Majkowski, Andrzej ;
Rysz, Andrzej .
PRZEGLAD ELEKTROTECHNICZNY, 2023, 99 (02) :51-55
[44]   Epileptic Disorder Detection of Seizures Using EEG Signals [J].
Alharthi, Mariam K. ;
Moria, Kawthar M. ;
Alghazzawi, Daniyal M. ;
Tayeb, Haythum O. .
SENSORS, 2022, 22 (17)
[45]   Novel deep learning framework for detection of epileptic seizures using EEG signals [J].
Mallick, Sayani ;
Baths, Veeky .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2024, 18
[46]   Automated analysis and detection of epileptic seizures in video recordings using artificial intelligence [J].
Rai, Pragya ;
Knight, Andrew ;
Hiillos, Matias ;
Kertesz, Csaba ;
Morales, Elizabeth ;
Terney, Daniella ;
Larsen, Sidsel Armand ;
Osterkjerhuus, Tim ;
Peltola, Jukka ;
Beniczky, Sandor .
FRONTIERS IN NEUROINFORMATICS, 2024, 18
[47]   Prediction of Epileptic Seizures for On-Demand Vagus Nerve Stimulation [J].
Nielsen, K. R. ;
Sevcencu, C. ;
Rasmussen, A. ;
Struijk, J. J. .
14TH NORDIC-BALTIC CONFERENCE ON BIOMEDICAL ENGINEERING AND MEDICAL PHYSICS, 2008, 20 :290-+
[48]   Long-range Prediction of Epileptic Seizures with Nonlinear Dynamics [J].
Guastello, Stephen J. ;
Boeh, Henry ;
Lynn, Mark .
NONLINEAR DYNAMICS PSYCHOLOGY AND LIFE SCIENCES, 2011, 15 (03) :377-388
[49]   On prediction of epileptic seizures by means of genetic programming artificial features [J].
Firpi, H ;
Goodman, E ;
Echauz, J .
ANNALS OF BIOMEDICAL ENGINEERING, 2006, 34 (03) :515-529
[50]   Prediction of Epileptic Seizures using Support Vector Machine and Regularization [J].
Ahmad, Shaikh Rezwan Rafid ;
Sayeed, Samee Mohammad ;
Ahmed, Zaziba ;
Siddique, Nusayer Masud ;
Parvez, Mohammad Zavid .
2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, :1217-1220