A new system theoretic classifier for detection and prediction of epileptic seizures

被引:0
作者
Sinha, AK [1 ]
Loparo, KA [1 ]
Richoux, WJ [1 ]
机构
[1] Case Western Reserve Univ, Dept Elect Engn & Comp Sci, Cleveland, OH 44106 USA
来源
PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7 | 2004年 / 26卷
关键词
fuzzy sets; fuzzy measures; system analysis; classification; electroencephalogram analysis; epilepsy; epileptic seizure detection; epileptic seizure prediction;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A system theoretic computational approach has been recently proposed as a generalization of probabilistic networks for modeling complex systems. The computational approach, Fuzzy Measure-theoretic Quantum Approximation of an Abstract System (FMQAS), generates a system measure between each pair of system objects as a relative measure of association incorporating, through a hierarchical iterative procedure, both the local and global significance of the interaction. FMQAS provides the basis for a new classification algorithm. A preliminary modification of this classification algorithm for temporal sequences is used to analyze electroencephalogram (EEG) data obtained in the temporal neighborhood of a seizure episode to obtain distinct state descriptions (patient invariant characterizations) of the seizure states. This state characterization enables seizure detection before onset with sufficient time to warn the individual or execute actions to abort the seizure formation.
引用
收藏
页码:415 / 418
页数:4
相关论文
共 50 条
[31]   Epileptic Seizures Prediction Using Deep Learning Techniques [J].
Usman, Syed Muhammad ;
Khalid, Shehzad ;
Aslam, Muhammad Haseeb .
IEEE ACCESS, 2020, 8 :39998-40007
[32]   Epileptic Seizures Detection Using iEEG Signals and Deep Learning Models [J].
Nourane Abderrahim ;
Amira Echtioui ;
Rafik Khemakhem ;
Wassim Zouch ;
Mohamed Ghorbel ;
Ahmed Ben Hamida .
Circuits, Systems, and Signal Processing, 2024, 43 :1597-1626
[33]   A Novel Blending Hilbert-Kolmogorov Approach for Epileptic Seizures detection [J].
Adda, Ahmed ;
Benoudnine, Hadjira .
2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
[34]   Epileptic Seizures Detection Using iEEG Signals and Deep Learning Models [J].
Abderrahim, Nourane ;
Echtioui, Amira ;
Khemakhem, Rafik ;
Zouch, Wassim ;
Ghorbel, Mohamed ;
Ben Hamida, Ahmed .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, 43 (03) :1597-1626
[35]   Entropies based detection of epileptic seizures with artificial neural network classifiers [J].
Kumar, S. Pravin ;
Sriraam, N. ;
Benakop, P. G. ;
Jinaga, B. C. .
EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (04) :3284-3291
[36]   Automatic detection of epileptic seizures in long-term EEG records [J].
Garces Correa, Agustina ;
Orosco, Lorena ;
Diez, Pablo ;
Laciar, Eric .
COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 57 :66-73
[37]   A Hybrid mRMR-Genetic Based Selection Method For The Prediction Of Epileptic Seizures [J].
Assi, E. Bou ;
Sawan, M. ;
Nguyen, D. K. ;
Rihana, S. .
2015 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2015, :326-329
[38]   An Automatic Prediction of Epileptic Seizures Using Cloud Computing and Wireless Sensor Networks [J].
Sareen, Sanjay ;
Sood, Sandeep K. ;
Gupta, Sunil Kumar .
JOURNAL OF MEDICAL SYSTEMS, 2016, 40 (11)
[39]   Semi-Supervised anomaly detection for the prediction and detection of pediatric focal epileptic seizures on fused EEG and ECG data [J].
Karasmanoglou, Apostolos ;
Giannakakis, Giorgos ;
Vorgia, Pelagia ;
Antonakakis, Marios ;
Zervakis, Michalis .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 101
[40]   Suggestions regarding new classification of epileptic seizures [J].
Herranz, JL .
REVISTA DE NEUROLOGIA, 1998, 26 (152) :598-600