A new system theoretic classifier for detection and prediction of epileptic seizures

被引:0
作者
Sinha, AK [1 ]
Loparo, KA [1 ]
Richoux, WJ [1 ]
机构
[1] Case Western Reserve Univ, Dept Elect Engn & Comp Sci, Cleveland, OH 44106 USA
来源
PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7 | 2004年 / 26卷
关键词
fuzzy sets; fuzzy measures; system analysis; classification; electroencephalogram analysis; epilepsy; epileptic seizure detection; epileptic seizure prediction;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A system theoretic computational approach has been recently proposed as a generalization of probabilistic networks for modeling complex systems. The computational approach, Fuzzy Measure-theoretic Quantum Approximation of an Abstract System (FMQAS), generates a system measure between each pair of system objects as a relative measure of association incorporating, through a hierarchical iterative procedure, both the local and global significance of the interaction. FMQAS provides the basis for a new classification algorithm. A preliminary modification of this classification algorithm for temporal sequences is used to analyze electroencephalogram (EEG) data obtained in the temporal neighborhood of a seizure episode to obtain distinct state descriptions (patient invariant characterizations) of the seizure states. This state characterization enables seizure detection before onset with sufficient time to warn the individual or execute actions to abort the seizure formation.
引用
收藏
页码:415 / 418
页数:4
相关论文
共 50 条
[21]   StationPlot: A New Non-stationarity Quantification Tool for Detection of Epileptic Seizures [J].
Pratiher, Sawon ;
Chattoraj, Subhankar ;
Mukherjee, Rajdeep .
2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, :499-503
[22]   Scalable Hypothesis Tests for Detection of Epileptic Seizures [J].
Moldovan, Dorin .
COMPUTATIONAL STATISTICS AND MATHEMATICAL MODELING METHODS IN INTELLIGENT SYSTEMS, VOL. 2, 2019, 1047 :157-166
[23]   Sudden Fall Detection and Protection for Epileptic Seizures [J].
Padma, Tatiparti ;
Kumari, Ch Usha .
2018 INTERNATIONAL CONFERENCE ON RECENT INNOVATIONS IN ELECTRICAL, ELECTRONICS & COMMUNICATION ENGINEERING (ICRIEECE 2018), 2018, :2334-2336
[24]   Detection of Epileptic Seizures using EEG Signals [J].
Gupta, Sarthak ;
Bagga, Siddhant ;
Maheshkar, Vikas ;
Bhatia, M. P. S. .
2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2020,
[25]   Energy efficient FPGA implementation of an epileptic seizure detection system using a QDA classifier [J].
Alam, Md Shamshad ;
Khan, Umamah ;
Hasan, Mohd ;
Farooq, Omar .
EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
[26]   Epileptic seizures detection and the analysis of optimal seizure prediction horizon based on frequency and phase analysis [J].
Jiang, Ximiao ;
Liu, Xiaotong ;
Liu, Youjun ;
Wang, Qingyun ;
Li, Bao ;
Zhang, Liyuan .
FRONTIERS IN NEUROSCIENCE, 2023, 17
[27]   Prediction of epileptic seizures based on heart rate variability [J].
Behbahani, Soroor ;
Dabanloo, Nader Jafarnia ;
Nasrabadi, Ali Motie ;
Dourado, Antonio .
TECHNOLOGY AND HEALTH CARE, 2016, 24 (06) :795-810
[28]   Interpretation of RQA variables: Application to the prediction of epileptic seizures [J].
Hamadene, Wassila ;
Peyrodie, Laurent ;
Seidiri, Haouaria .
2006 8TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-4, 2006, :2444-+
[29]   EPILAB: A software package for studies on the prediction of epileptic seizures [J].
Teixeira, C. A. ;
Direito, B. ;
Feldwisch-Drentrup, H. ;
Valderrama, M. ;
Costa, R. P. ;
Alvarado-Rojas, C. ;
Nikolopoulos, S. ;
Le Van Quyen, M. ;
Timmer, J. ;
Schelter, B. ;
Dourado, A. .
JOURNAL OF NEUROSCIENCE METHODS, 2011, 200 (02) :257-271
[30]   Algorithms and topographic mapping for epileptic seizures recognition and prediction [J].
Mammone, N. ;
La Foresta, F. ;
Inuso, G. ;
Morabito, F. C. ;
Aguglia, U. ;
Cianci, V. .
NEURAL NETS WIRN09, 2009, 204 :261-270