Crystal structure of the stoichiometric lithium-manganese oxide, LiMn2O4, below the temperature of phase transition from cubic (Fd3m) to orthorhombic (Fddd) structure has been investigated, using the high-resolution synchrotron X-ray powder diffraction. Phase analysis of low-temperature diffraction patterns makes it clear that, contrary to numerous earlier reports, only one structural transformation occurs in the stoichiometric LiMn2O4: it is the first-order transition from cubic to orthorhombic phase at about 285 K, with the coexistence of both phases down to about 260 K. At 250 K the unit cell is face-centred orthorhombic, Fddd, with a = 24.7498(6) Angstrom, b = 24.8655(6) Angstrom and c = 8.1932(2) Angstrom (bla = 1.0047). With decreasing temperature, the orthorhombic phase shifts to a pseudo-tetragonal symmetry, and at a temperature of 10 K, the unit-cell parameters are a = 24.7611(12) Angstrom, b = 24.8003(12) Angstrom and c = 8.1934(4) Angstrom (bla = 1.0016). The high-resolution synchrotron X-ray diffraction techniques enable to show unequivocally that the structure does not change to tetragonal. (C) 2004 Elsevier B.V. All rights reserved.