Extensive Study on Effects of Defects in CZTS/CZTSe Quantum Dots Kesterite Solar Cells

被引:2
作者
Sahoo, G. S. [1 ]
Routray, S. [2 ]
Mishra, G. P. [3 ]
机构
[1] Aditya Engn Coll, Dept ECE, Surampalem, Andhra Pradesh, India
[2] SRM Inst Sci & Technol, Dept ECE, Chennai, Tamil Nadu, India
[3] Natl Inst Technol Raipur, Dept ECE, Raipur, Madhya Pradesh, India
来源
2021 IEEE 16TH NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE (NMDC 2021) | 2021年
关键词
Kesterite; Solar Cell; Quantum Dots; Efficiency; Defects; CU2ZNSNS4; EFFICIENCY;
D O I
10.1109/NMDC50713.2021.9677478
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Earth abundant Kesterite semiconductor is emerging as a promising solar cell candidate due to it's low-cost, environment friendly and non-toxic absorber nature with suitable optical properties. However, the achievable conversion efficiency is quite low because of high defect density, interface traps and grain boundaries. In this study a numerical simulator is used to understand the effects of each point of GB defects on the electrical characteristics of kesterite solar cells step-by-step. An overview of all limiting factors such as GB defects, deep defects and tail states associated with recombination mechanisms are presented with help of exponential tail distribution and Gaussian distributions. The ideal QD embedded kesterite solar cell shows an efficiency of 41.4%, while it reduces to 15.6% after considering all of the above mentioned defects in barrier (CZTS) and QD (CZTSSe) material. The distribution of defects inside the band gap is shown here with the help of density of states by using exponential tail distribution and Gaussian distributions functions.
引用
收藏
页数:4
相关论文
共 27 条
[11]   Suns-VOC characteristics of high performance kesterite solar cells [J].
Gunawan, Oki ;
Gokmen, Tayfun ;
Mitzi, David B. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (08)
[12]   Upper limit to the photovoltaic efficiency of imperfect crystals from first principles [J].
Kim, Sunghyun ;
Marquez, Jose A. ;
Unold, Thomas ;
Walsh, Aron .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (05) :1481-1491
[13]   Direct evidence of void passivation in Cu(InGa)(SSe)2 absorber layers [J].
Lee, Dongho ;
Lee, Jaehan ;
Heo, Sung ;
Park, Jong-Bong ;
Kim, Young-Su ;
Mo, Chan B. ;
Huh, Kwangsoo ;
Yang, JungYup ;
Nam, Junggyu ;
Baek, Dohyun ;
Park, Sungchan ;
Kim, ByoungJune ;
Kim, Dongseop ;
Kang, Yoonmook .
APPLIED PHYSICS LETTERS, 2015, 106 (08)
[14]   Cation Substitution in Earth-Abundant Kesterite Photovoltaic Materials [J].
Li, Jianjun ;
Wang, Dongxiao ;
Li, Xiuling ;
Zeng, Yu ;
Zhang, Yi .
ADVANCED SCIENCE, 2018, 5 (04)
[15]   Prospects and performance limitations for Cu-Zn-Sn-S-Se photovoltaic technology [J].
Mitzi, David B. ;
Gunawan, Oki ;
Todorov, Teodor K. ;
Barkhouse, D. Aaron R. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1996)
[16]   Photovoltaic materials: Present efficiencies and future challenges [J].
Polman, Albert ;
Knight, Mark ;
Garnett, Erik C. ;
Ehrler, Bruno ;
Sinke, Wim C. .
SCIENCE, 2016, 352 (6283)
[17]   On the origin of band-tails in kesterite [J].
Rey, G. ;
Larramona, G. ;
Bourdais, S. ;
Chone, C. ;
Delatouche, B. ;
Jacob, A. ;
Dennler, G. ;
Siebentritt, S. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 179 :142-151
[18]   The band gap of Cu2ZnSnSe4: Effect of order-disorder [J].
Rey, G. ;
Redinger, A. ;
Ler, J. Send ;
Weiss, T. P. ;
Thevenin, M. ;
Guennou, M. ;
El Adib, B. ;
Siebentritt, S. .
APPLIED PHYSICS LETTERS, 2014, 105 (11)
[19]   The order-disorder transition in Cu2ZnSnS4 - A neutron scattering investigation [J].
Ritscher, A. ;
Hoelzel, M. ;
Lerch, M. .
JOURNAL OF SOLID STATE CHEMISTRY, 2016, 238 :68-73
[20]   Electrical, Optical, and Reliability Analysis of QD-Embedded Kesterite Solar Cell [J].
Sahoo, G. S. ;
Routray, S. ;
Pradhan, K. P. ;
Mishra, G. P. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (11) :5518-5524