Stable all-solid-state lithium metal batteries enabled by ultrathin LiF/Li3Sb hybrid interface layer

被引:67
作者
Wang, Aonan [1 ]
Li, Jie [1 ]
Yi, Maoyi [1 ]
Xie, Yangyang [1 ]
Chang, Shilei [1 ]
Shi, Hongbing [1 ]
Zhang, Liuyun [1 ]
Bai, Maohui [1 ]
Zhou, Yangen [1 ]
Lai, Yanqing [1 ]
Zhang, Zhian [1 ]
机构
[1] Cent South Univ, Hunan Prov Key Lab Nonferrous Value Added Met, Sch Met & Environm, Engn Res Ctr,Minist Educ Adv Battery Mat, Changsha 410083, Peoples R China
关键词
Solid-state batteries; Lithium; Interface; Antimony(III) fluoride; ANODE; DENDRITE; SUPPRESSION; STRATEGIES; GROWTH;
D O I
10.1016/j.ensm.2022.04.023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The PEO-LLZTO composite solid electrolyte is considered to be one of the most promising solid electrolytes. However, there is still a heavily short circuit caused by dendrite penetration due to the uneven deposition of Li on the solid electrolyte/Li anode interface. In this paper, the SbF3 is used as the precursor to treating commercial Li foils by spray painting method, and an ultrathin LiF/Li3Sb hybrid interface layer is constructed. The interface layer can improve the deposition of Li and enhance the solid electrolyte/anode interface stability effectively contributed by the high Li-ion conductivity of LiF and lithiophilic Li3Sb. Using SbF3@Li as the anode to assemble solid symmetric cells, a high current density of 0.6 mA.cm(-2) and an extended cycle life at 0.2 mA.cm(-2) for 0.2 mA.cm(-2) are obtained. Moreover, assembling full cells with the LiFePO4 or single crystal LiNi0.6Mn0.1Co0.3O2, it is found that the cycle stability and coulomb efficiency are greatly improved. The LiFePO4|PEO-LLZTO|SbF3@Li cell delivers stable cycling at 0.2 C over 200 cycles (94.5% capacity retention), and it also exhibits a superior rate capability of 127.9 mA.cm(-1) at 1 C. These results demonstrate that the modified Li anode holds large potential for all-solid-state lithium metal battery applications.
引用
收藏
页码:246 / 254
页数:9
相关论文
共 52 条
[1]   A Scalable Approach to Dendrite-Free Lithium Anodes via Spontaneous Reduction of Spray-Coated Graphene Oxide Layers [J].
Bai, Maohui ;
Xie, Keyu ;
Yuan, Kai ;
Zhang, Kun ;
Li, Nan ;
Shen, Chao ;
Lai, Yanqing ;
Vajtai, Robert ;
Ajayan, Pulickel ;
Wei, Bingqing .
ADVANCED MATERIALS, 2018, 30 (29)
[2]   Processing Strategies to Improve Cell-Level Energy Density of Metal Sulfide Electrolyte-Based All-Solid-State Li Metal Batteries and Beyond [J].
Cao, Daxian ;
Zhao, Yuyue ;
Sun, Xiao ;
Natan, Avi ;
Wang, Ying ;
Xiang, Pengyang ;
Wang, Wei ;
Zhu, Hongli .
ACS ENERGY LETTERS, 2020, 5 (11) :3468-3489
[3]   Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations [J].
Cao, Daxian ;
Sun, Xiao ;
Li, Qiang ;
Natan, Avi ;
Xiang, Pengyang ;
Zhu, Hongli .
MATTER, 2020, 3 (01) :57-94
[4]   Interface Aspects in All-Solid-State Li-Based Batteries Reviewed [J].
Chen, Chunguang ;
Jiang, Ming ;
Zhou, Tao ;
Raijmakers, Luc ;
Vezhlev, Egor ;
Wu, Baolin ;
Schuelli, Tobias U. ;
Danilov, Dmitri L. ;
Wei, Yujie ;
Eichel, Ruediger-A. ;
Notten, Peter H. L. .
ADVANCED ENERGY MATERIALS, 2021, 11 (13)
[5]   Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries [J].
Chen, Hao ;
Yang, Yufei ;
Boyle, David T. ;
Jeong, You Kyeong ;
Xu, Rong ;
de Vasconcelos, Luize Scalco ;
Huang, Zhuojun ;
Wang, Hansen ;
Wang, Hongxia ;
Huang, Wenxiao ;
Li, Huiqiao ;
Wang, Jiangyan ;
Gu, Hanke ;
Matsumoto, Ryuhei ;
Motohashi, Kazunari ;
Nakayama, Yuri ;
Zhao, Kejie ;
Cui, Yi .
NATURE ENERGY, 2021, 6 (08) :790-798
[6]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[7]   Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries [J].
Chi, Shang-Sen ;
Liu, Yongchang ;
Zhao, Ning ;
Guo, Xiangxin ;
Nan, Ce-Wen ;
Fan, Li-Zhen .
ENERGY STORAGE MATERIALS, 2019, 17 :309-316
[8]   IndexCub: a ready-to-use set of routines for X-ray diffraction line profile analysis [J].
Contreras-Torres, F. F. .
POWDER DIFFRACTION, 2019, 34 (02) :110-118
[9]   Nonlinear non-Gaussian and multimode probabilistic weighted copula regression model based deep neural network [J].
Cui, Chang .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2021, 99 :S432-S442
[10]  
Ding ZL, 2020, J ELECTROCHEM SOC, V167, DOI [10.1149/1145-7111/ab7f84, 10.1149/1945-7111/ab7f84]