Existence Results for a System of Coupled Hybrid Fractional Differential Equations

被引:26
作者
Ahmad, Bashir [1 ]
Ntouyas, Sotiris K. [1 ,2 ]
Alsaedi, Ahmed [1 ]
机构
[1] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Fac Sci, Jeddah 21589, Saudi Arabia
[2] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
关键词
BOUNDARY-VALUE PROBLEM; POSITIVE SOLUTIONS; UNIQUENESS;
D O I
10.1155/2014/426438
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper studies the existence of solutions for a system of coupled hybrid fractional differential equations with Dirichlet boundary conditions. We make use of the standard tools of the fixed point theory to establish the main results. The existence and uniqueness result is elaborated with the aid of an example.
引用
收藏
页数:6
相关论文
共 38 条
[11]  
Baleanu D., 2014, ABSTR APPL ANAL, V2014
[12]   Asymptotic integration of some nonlinear differential equations with fractional time derivative [J].
Baleanu, Dumitru ;
Agarwal, Ravi P. ;
Mustafa, Octavian G. ;
Cosulschi, Mirel .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (05)
[13]  
Cheng LL, 2014, ELECTRON J DIFFER EQ
[14]  
Choi J., 2014, HONAM MATH J, V36, P437
[15]  
Choi Junesang, 2014, East Asian Mathematical Journal, V30, P283, DOI 10.7858/eamj.2014.018
[16]   Some New Saigo Type Fractional Integral Inequalities and Their q-Analogues [J].
Choi, Junesang ;
Agarwal, Praveen .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[17]  
Dhage B. C., TOPOLOGICAL IN PRESS
[18]  
Graef J.R., 2011, Fract. Differ. Calc, V2, P554, DOI DOI 10.7153/fdc-02-06
[19]   Existence and uniqueness of solutions for a fractional boundary value problem on a graph [J].
Graef, John R. ;
Kong, Lingju ;
Wang, Min .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) :499-510
[20]  
Granas A., 2003, Fixed Point Theory, DOI DOI 10.1007/978-0-387-21593-8