Gradient estimates for the heat equation under the Ricci flow

被引:103
作者
Bailesteanu, Mihai [2 ]
Cao, Xiaodong [2 ]
Pulemotov, Artem [1 ,2 ]
机构
[1] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
[2] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Ricci flow; Heat equation; Li-Yau inequality; Harnack inequality; Manifold with boundary; HARNACK INEQUALITIES; DEFORMATION; CURVATURE; MANIFOLDS; KERNEL;
D O I
10.1016/j.jfa.2009.12.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper considers a manifold M evolving under the Ricci flow and establishes a series of gradient estimates for positive Solutions of the heat equation on M. Among other results, we prove Li-Yau-type inequalities in this context. We consider both the case where M is a complete manifold without boundary and the case where M is a compact manifold with boundary. Applications of our results include Harnack inequalities for the heat equation on M. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:3517 / 3542
页数:26
相关论文
共 38 条
[1]  
[Anonymous], 1994, C P LECT NOTES GEOME
[2]  
[Anonymous], 1987, Continuum regularized Yang-Mills theory
[3]   A probabilistic approach to the Yang-Mills heat equation [J].
Arnaudon, M ;
Bauer, RO ;
Thalmaier, A .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (02) :143-166
[4]   Brownian motion with respect to a metric depending on time; definition, existence and applications to Ricci flow [J].
Arnaudon, Marc ;
Coulibaly, Kolehe Abdoulaye ;
Thalmaier, Anton .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (13-14) :773-778
[5]  
ARONSON DG, 1979, CR ACAD SCI A MATH, V288, P103
[6]  
Bakry D, 1999, REV MAT IBEROAM, V15, P143
[7]   Differential Harnack estimates for backward heat equations with potentials under the Ricci flow [J].
Cao, Xiaodong .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (04) :1024-1038
[8]   DIFFERENTIAL HARNACK ESTIMATES FOR TIME-DEPENDENT HEAT EQUATIONS WITH POTENTIALS [J].
Cao, Xiaodong ;
Hamilton, Richard S. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (04) :989-1000
[9]  
CHARALAMBOUS N, YANGMILLS HEAT UNPUB
[10]   Constrained and linear Harnack inequalities for parabolic equations [J].
Chow, B ;
Hamilton, RS .
INVENTIONES MATHEMATICAE, 1997, 129 (02) :213-238