Model Predictive Control in Aerospace Systems: Current State and Opportunities

被引:231
作者
Eren, Utku [1 ]
Prach, Anna [2 ]
Kocer, Basaran Bahadir [3 ]
Rakovic, Sasa V. [4 ]
Kayacan, Erdal [5 ]
Acikmese, Behcet [1 ]
机构
[1] Univ Washington, William E Boeing Dept Aeronaut & Astronaut, Seattle, WA 98195 USA
[2] Natl Univ Singapore, Singapore Inst Neurotechnol, Singapore 119077, Singapore
[3] Nanyang Technol Univ, Singapore 639798, Singapore
[4] Univ Porto, P-4200465 Oporto, Portugal
[5] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
基金
美国国家科学基金会;
关键词
RECEDING HORIZON CONTROL; FORMATION FLYING GUIDANCE; LOW-THRUST SPACECRAFT; ATTITUDE-CONTROL; NONLINEAR-SYSTEMS; CONTROL ALGORITHM; FLIGHT CONTROL; EXPLICIT MPC; TIME; OPTIMIZATION;
D O I
10.2514/1.G002507
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
CONTROLLER design is more troublesome in aerospace systems due to, inter alia, diversity of mission platforms, convoluted nonlinear dynamics, predominantly strict mission and resource constraints, and demands for guaranteed operability within a wide range of operating conditions that can undergo structural or unexpected changes. Most of the space systems (e.g., planetary observers, rovers, space telescopes, spacecraft optical systems, etc.) require studious design, production, and testing processes. Indeed, space systemsare required to endure a wide spectrumof environmental changes with limited resources and are typically subject to partial, highly expensive, or even nonexistent service or repair. Clearly, aerospace missions induce high cost, require long development times as well as long mission lifespan, and demand high-fidelity operation so that, not surprisingly, related control tasks are significantly more demanding in aerospace compared to many other industries. Copyright © 2016 by the American Institute of Aeronautics and Astronautics, Inc.
引用
收藏
页码:1541 / 1566
页数:26
相关论文
共 300 条
[1]  
Acikmese B., 2012, AIAA GUIDANCE NAVIGA, DOI [10.2514/6.2006-6070, DOI 10.2514/6.2006-6070]
[2]   Convex programming approach to powered descent guidance for Mars landing [J].
Acikmese, Behcet ;
Ploen, Scott R. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2007, 30 (05) :1353-1366
[3]   Lossless Convexification of Nonconvex Control Bound and Pointing Constraints of the Soft Landing Optimal Control Problem [J].
Acikmese, Behcet ;
Carson, John M., III ;
Blackmore, Lars .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013, 21 (06) :2104-2113
[4]   A robust model predictive control algorithm for incrementally conic uncertain/nonlinear systems [J].
Acikmese, Behcet ;
Carson, John M., III ;
Bayard, David S. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2011, 21 (05) :563-590
[5]  
Ackmese B., 2013, AIAA GUID NAV CONTR, DOI [10.2514/6.2013-5103, DOI 10.2514/6.2013-5103]
[6]   Suboptimal Predictive Control for Satellite Detumbling [J].
Ahmed, Shakil ;
Kerrigan, Eric C. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2014, 37 (03) :850-859
[7]  
Alessio A., 2007, Proceedings of the European Control Conference 2007 (ECC), P2813
[8]   Model predictive quadrotor control: attitude, altitude and position experimental studies [J].
Alexis, K. ;
Nikolakopoulos, G. ;
Tzes, A. .
IET CONTROL THEORY AND APPLICATIONS, 2012, 6 (12) :1812-1827
[9]   Aerial robotic contact-based inspection: planning and control [J].
Alexis, Kostas ;
Darivianakis, Georgios ;
Burri, Michael ;
Siegwart, Roland .
AUTONOMOUS ROBOTS, 2016, 40 (04) :631-655
[10]   Robust Model Predictive Flight Control of Unmanned Rotorcrafts [J].
Alexis, Kostas ;
Papachristos, Christos ;
Siegwart, Roland ;
Tzes, Anthony .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2016, 81 (3-4) :443-469