Instantons re-examined: Dynamical tunneling and resonant tunneling

被引:23
作者
Le Deunff, Jeremy [1 ]
Mouchet, Amaury [1 ]
机构
[1] Univ Tours, Lab Math & Phys Theor, CNRS, UMR 6083, F-37200 Tours, France
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 04期
关键词
COMPLEX PERIODIC-ORBITS; PATH-INTEGRALS; TIME PATH; QUANTUM; CHAOS; SPECTRUM; EIGENVALUES; REFLECTION; SYSTEMS;
D O I
10.1103/PhysRevE.81.046205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Starting from trace formulas for the tunneling splittings (or decay rates) analytically continued in the complex time domain, we obtain explicit semiclassical expansions in terms of complex trajectories that are selected with appropriate complex-time paths. We show how this instantonlike approach, which takes advantage of an incomplete Wick rotation, accurately reproduces tunneling effects not only in the usual double-well potential but also in situations where a pure Wick rotation is insufficient, for instance dynamical tunneling or resonant tunneling. Even though only one-dimensional autonomous Hamiltonian systems are quantitatively studied, we discuss the relevance of our method for multidimensional and/or chaotic tunneling.
引用
收藏
页数:18
相关论文
共 48 条
[21]  
Haake F., 2001, SPRINGER SERIES SYNE, P47, DOI 10.1007/978-3-662-04506-0
[22]   DYNAMICAL TUNNELING AND MOLECULAR-SPECTRA [J].
HELLER, EJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (09) :2625-2634
[23]  
HELLER EJ, 1999, CHAOS PHYS QUANTIQUE, P547
[24]   COMPLEX TIME PATH FOR TUNNELING AT INTERMEDIATE ENERGY [J].
ILGENFRITZ, EM ;
PERLT, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (21) :5729-5740
[25]   CORRECTED BOHR-SOMMERFELD QUANTUM CONDITIONS FOR NONSEPARABLE SYSTEMS [J].
KELLER, JB .
ANNALS OF PHYSICS, 1958, 4 (02) :180-188
[26]   MULTIRESONANCE TUNNELING EFFECT IN DOUBLE-WELL POTENTIALS [J].
KHUATDUY, D ;
LEBOEUF, P .
APPLIED PHYSICS LETTERS, 1993, 63 (14) :1903-1905
[27]   Computing quantum eigenvalues made easy [J].
Korsch, HJ ;
Glück, M .
EUROPEAN JOURNAL OF PHYSICS, 2002, 23 (04) :413-426
[28]  
Landau L. D, 1991, Quantum Mechanics: NonRelativistic Theory, V3
[29]   The level splitting distribution in chaos-assisted tunnelling [J].
Leyvraz, F ;
Ullmo, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (10) :2529-2551
[30]   Regular-to-Chaotic Tunneling Rates: From the Quantum to the Semiclassical Regime [J].
Loeck, Steffen ;
Baecker, Arnd ;
Ketzmerick, Roland ;
Schlagheck, Peter .
PHYSICAL REVIEW LETTERS, 2010, 104 (11)