Equivalences induced by adjoint functors

被引:5
作者
Modoi, C [1 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, RO-3400 Cluj Napoca, Romania
关键词
adjoint pair; equivalence; localization; Grothendieck categories; small preadditive category;
D O I
10.1081/AGB-120019000
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and B be two Grothendieck categories, R : A --> B, L: B --> A a pair of adjoint functors, S is an element of B a generator, and U= L(S). U defines a hereditary torsion class in A, which is carried by L, under suitable hypotheses, into a hereditary torsion class in B. We investigate necessary and sufficient conditions which assure that the functors R and L induce equivalences between the quotient categories of A and B modulo these torsion classes. Applications to generalized module categories, rings with local units and group graded rings are also given here.
引用
收藏
页码:2327 / 2355
页数:29
相关论文
共 21 条
[1]  
ALBU T, 1990, COMMUN ALGEBRA, V15, P839
[2]  
Anh P.N., 1987, TSUKUBA J MATH, V11, P1
[3]   STABLE EQUIVALENCE OF DUALIZING R-VARIETIES [J].
AUSLANDER, M ;
REITEN, I .
ADVANCES IN MATHEMATICS, 1974, 12 (03) :306-366
[4]   DENSITY AND EQUIVALENCE [J].
FULLER, KR .
JOURNAL OF ALGEBRA, 1974, 29 (03) :528-550
[5]  
Gabriel, 1962, B SOC MATH FRANCE, V90, P323
[6]   ENDOMORPHISM-RINGS AND CATEGORY EQUIVALENCES [J].
GARCIA, JL ;
SAORIN, M .
JOURNAL OF ALGEBRA, 1989, 127 (01) :182-205
[7]  
GARKUSHA GA, ST PETERSBURG MATH J, V13, P149
[8]   TTF THEORIES IN ABELIAN CATEGORIES [J].
GENTLE, R .
COMMUNICATIONS IN ALGEBRA, 1988, 16 (05) :877-908
[9]  
HERNANDEZ JLG, 1987, MATH Z, V196, P87
[10]  
HERNANDEZ JLG, 1987, ISR J MATH, V58, P324