Recurrences in three-state quantum walks on a plane
被引:25
|
作者:
Kollar, B.
论文数: 0引用数: 0
h-index: 0
机构:
Hungarian Acad Sci, Res Inst Solid State Phys & Opt, Dept Quantum Opt & Quantum Informat, H-1121 Budapest, HungaryCzech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, CR-11519 Prague 1, Stare Mesto, Czech Republic
Kollar, B.
[2
]
Stefanak, M.
论文数: 0引用数: 0
h-index: 0
机构:
Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, CR-11519 Prague 1, Stare Mesto, Czech RepublicCzech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, CR-11519 Prague 1, Stare Mesto, Czech Republic
Stefanak, M.
[1
]
Kiss, T.
论文数: 0引用数: 0
h-index: 0
机构:
Hungarian Acad Sci, Res Inst Solid State Phys & Opt, Dept Quantum Opt & Quantum Informat, H-1121 Budapest, HungaryCzech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, CR-11519 Prague 1, Stare Mesto, Czech Republic
Kiss, T.
[2
]
Jex, I.
论文数: 0引用数: 0
h-index: 0
机构:
Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, CR-11519 Prague 1, Stare Mesto, Czech RepublicCzech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, CR-11519 Prague 1, Stare Mesto, Czech Republic
Jex, I.
[1
]
机构:
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, CR-11519 Prague 1, Stare Mesto, Czech Republic
[2] Hungarian Acad Sci, Res Inst Solid State Phys & Opt, Dept Quantum Opt & Quantum Informat, H-1121 Budapest, Hungary
来源:
PHYSICAL REVIEW A
|
2010年
/
82卷
/
01期
关键词:
LATTICE;
D O I:
10.1103/PhysRevA.82.012303
中图分类号:
O43 [光学];
学科分类号:
070207 ;
0803 ;
摘要:
We analyze the role of dimensionality in the time evolution of discrete-time quantum walks through the example of the three-state walk on a two-dimensional triangular lattice. We show that the three-state Grover walk does not lead to trapping (localization) or recurrence to the origin, in sharp contrast to the Grover walk on the two-dimensional square lattice. We determine the power-law scaling of the probability at the origin with the method of stationary phase. We prove that only a special subclass of coin operators can lead to recurrence, and there are no coins that lead to localization. The propagation for the recurrent subclass of coins is quasi-one dimensional.