Lower bounds for Estrada index and Laplacian Estrada index

被引:53
作者
Bamdad, Hamidreza
Ashraf, Firouzeh [1 ]
Gutman, Ivan [2 ]
机构
[1] Univ Isfahan, Dept Math, Esfahan 8174673441, Iran
[2] Univ Kragujevac, Fac Sci, Kragujevac 34000, Serbia
关键词
Spectrum (of graph); Laplacian spectrum (of graph); Estrada index; Laplacian Estrada index; ENERGY;
D O I
10.1016/j.aml.2010.01.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be an n-vertex graph. If lambda(1), lambda(2), ..., lambda(n) and mu(1), mu(2,) ..., mu(n) are the ordinary (adjacency) eigenvalues and the Laplacian eigenvalues of G, respectively, then the Estrada index and the Laplacian Estrada index of G are defined as EE(G) = Sigma(n)(i=1)e(lambda i), and LEE(G) = Sigma(n)(i=1)e(mu i), respectively. Some new lower bounds for EE and LEE are obtained and shown to be the best possible. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:739 / 742
页数:4
相关论文
共 13 条
[1]  
[Anonymous], 2009, Analysis of Complex Networks: From Biology to Linguistics, DOI DOI 10.1002/9783527627981.CH7
[2]  
Cvetkovic D., 1995, Spectra of Graphs: Theory and Applications
[3]   Characterization of 3D molecular structure [J].
Estrada, E .
CHEMICAL PHYSICS LETTERS, 2000, 319 (5-6) :713-718
[4]   Subgraph centrality in complex networks -: art. no. 056103 [J].
Estrada, E ;
Rodríguez-Velázquez, JA .
PHYSICAL REVIEW E, 2005, 71 (05)
[5]   Atomic branching in molecules [J].
Estrada, E ;
Rodríguez-Velázquez, JA ;
Randic, M .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2006, 106 (04) :823-832
[6]   Statistical-mechanical approach to subgraph centrality in complex networks [J].
Estrada, Ernesto ;
Hatano, Naomichi .
CHEMICAL PHYSICS LETTERS, 2007, 439 (1-3) :247-251
[7]  
Fath-Tabar G.H., 2009, Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math.), V139, P1
[8]  
Godsil C., 2001, Algebraic graph theory
[9]   Laplacian energy of a graph [J].
Gutman, I ;
Zhou, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (01) :29-37
[10]  
Gutman I, 2001, ALGEBRAIC COMBINATORICS AND APPLICATIONS, P196