Generalised connections on affine Lie algebroids

被引:5
作者
Mestdag, T [1 ]
机构
[1] State Univ Ghent, Dept Math Phys & Astron, B-9000 Ghent, Belgium
关键词
affine bundle; Lie algebroid; pseudo-SODE; generalised connection;
D O I
10.1016/S0034-4877(03)80023-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate a geometric model for a certain class of first-order differential equations on an affine bundle, called pseudo-SODEs. We mention a generalised version of the concept of connection. Further, if the affine bundle is related to a Lie algebroid, we give a definition for torsion and curvature for such a generalised connection. Next, we show how a pseudo-SODE generates a generalised connection and we characterise this construction by means of the vanishing of torsion.
引用
收藏
页码:297 / 305
页数:9
相关论文
共 16 条
[1]  
CANTRIJN F, 2002, IN PRESS DIFF GEOM A
[2]  
CARINENA JF, 1999, SYMMETRIES QUANTUM M, P67
[3]  
CLEMENTEGALLARD.J, 2000, NONLINEAR CONTROL NE
[4]  
CRAMPIN M, 1995, QUADERNI CONSIGLIO N, V47
[5]   Lie algebroids, holonomy and characteristic classes [J].
Fernandes, RL .
ADVANCES IN MATHEMATICS, 2002, 170 (01) :119-179
[6]  
Fernandes RL, 2000, J DIFFER GEOM, V54, P303
[7]   ALGEBRAIC CONSTRUCTIONS IN THE CATEGORY OF LIE ALGEBROIDS [J].
HIGGINS, PJ ;
MACKENZIE, K .
JOURNAL OF ALGEBRA, 1990, 129 (01) :194-230
[8]  
Libermann P., 1996, ARCH MATH-BRNO, V32, P147
[9]  
Mackenzie K., 1987, LONDON MATH SOC LECT, V124
[10]   Lie algebroid structures and Lagrangian systems on affine bundles [J].
Martínez, E ;
Mestdag, T ;
Sarlet, W .
JOURNAL OF GEOMETRY AND PHYSICS, 2002, 44 (01) :70-95