Existence of multiple positive solutions for second order nonlinear dynamic BVPs by variational methods

被引:19
作者
Agarwal, Ravi P. [1 ]
Otero-Espinar, Victoria
Perera, Kanishka
Vivero, Dolores R.
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela, Galicia, Spain
关键词
dynamic boundary value problem; multiple positive solutions; variational methods; critical point theory;
D O I
10.1016/j.jmaa.2006.09.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to employ variational techniques and critical point theory to prove some sufficient conditions for the existence of multiple positive solutions to a nonlinear second order dynamic equation with homogeneous Dirichlet boundary conditions. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1263 / 1274
页数:12
相关论文
共 8 条
[1]  
Agarwal RP, 2004, NONLINEAR ANAL-THEOR, V58, P69, DOI 10.1016/j.na.2004.11.012
[2]   Multiple positive solutions of singular problems by variational methods [J].
Agarwal, RP ;
Perera, K ;
O'Regan, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (03) :817-824
[3]  
AGARWAL RP, IN PRESS CANAD MATH
[4]  
[Anonymous], ADV DIFFERENCE EQU
[5]   Criterions for absolute continuity on time scales [J].
Cabada, A ;
Vivero, DR .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (11) :1013-1028
[6]  
CERAMI G, 1978, RENDICONTI ACCADEMIA, V112, P332
[7]  
Kelley W.G., 2001, Dynamic Equations on Time Scales: AnIntroduction With Applications, DOI DOI 10.1007/978-1-4612-0201-1
[8]  
Rabinowitz P. H., 1986, CBMS REG C SER MATH, V65